26526

REMEDIAL SITE ASSESSMENT DECISION - EPA REGION IV

Site Name: _Trident North Landfill	EPA ID# : <u>SCD 980558233</u>	
Alias Site Names:		
City: Jedburg	County or Parish: <u>Dorchester/Berkeley</u>	State: SC
Refer to Report Dated: June 5, 1995	Report type: SIP	
Report developed by: <u>SCDHEC</u>		
DECISION: X 1. Further Remedial Site Assessi	ment under CERCLA (Superfund) is <u>not</u> required be	ecause:
site assessment under	For further remedial 1b. Site may qualify for CERCLA action, but is defermant Action Planned - NFRAP)	
2. Further Assessment Needed U	nder CERCLA: 2a. (optional) Priority:	Higher Lower
2b. Activity PA Type: SI	ESI HRS evaluation	
Other:		
DISCUSSION/RATIONALE: Continued GW monitoring is sufficient;	; lack of environmental targets; site HRS score < 28	.5.
Report Reviewed and Approved by: Ralph O. Howard, Jr Site Decision Made by: Ralph O. Howard, Jr.	Signature: Ralph C. Howard, Signature: Ralph C. Hovand,	Date: <u>8-11-95</u> Date: <u>8-11-95</u>

EPA Form # 9100-3

PAGE:

1

PRESCORE 3.0 - PRESCORE.TCL File 07/25/94 HRS DOCUMENTATION RECORD Trident North Landfill - 06/02/95

 Site Name: Trident North Landfill (as entered in CERCLIS)

2. Site CERCLIS Number: SCD980558233

3. Site Reviewer: Peter N. Koufopoulos

4. Date: March 1, 1995

Site Location: Summerville/Dorchester-Berkeley, South Carolina (City/County, State)

6. Congressional District:

7. Site Coordinates: Single

Latitude: 33°04'06.1" Longitude: 080°12'46.7"

	Score
Ground Water Migration Pathway Score (Sgw)	0.00
Surface Water Migration Pathway Score (Ssw)	3.07
Soil Exposure Pathway Score (Ss)	0.00
Air Migration Pathway Score (Sa)	1.09

	Site Score	1.63
Į		

NOTE

EPA uses the terms "facility," "site," and "release" interchangeably. The term "facility" is broadly defined in CERCLA to include any area where hazardous substances have "come to be located" (CERCLA Section 109(9)), and the listing process is not intended to define or reflect boundaries of such facilities or releases. Site names, and references to specific parcels or properties, are provided for general identification purposes only. Knowledge regarding the extent of sites will be refined as more information is developed during the RI/FS and even during implementation of the remedy.

PRESCORE 3.0 - PRESCORE.TCL File 07/25/94 PAGE: 2 WASTE QUANTITY

Trident North Landfill - 06/02/95

1. WASTESTREAM QUANTITY SUMMARY TABLE, SOURCE: LANDFILL

a. Wastestream ID	
b. Hazardous Constituent Quantity (C) (lbs.)	0.00
c. Data Complete?	NO
d. Hazardous Wastestream Quantity (W) (lbs.)	0.00
e. Data Complete?	NO
f. Wastestream Quantity Value (W/5,000)	0.00E+00

PRESCORE 3.0 - PRESCORE.TCL File 07/25/94 PAGE: 3 WASTE QUANTITY Trident North Landfill - 06/02/95

2. SOURCE HAZARDOUS WASTE QUANTITY FACTOR TABLE

a.	Source ID	LANDFILL	
b.	Source Type	Landfill	
c.	Secondary Source Type	N.A.	
d.	Source Vol.(yd3/gal) Source Area (ft2)	900000.00 0.00	
e.	Source Volume/Area Value	3.60E+02	
f.	Source Hazardous Constituent Quantity (HCQ) Value (sum of 1b)	0.00E+00	
g.	Data Complete?	NO	
h.	Source Hazardous Wastestream Quantity (WSQ) Value (sum of 1f)	0.00E+00	
i.	Data Complete?	NO	
k.	Source Hazardous Waste Quantity (HWQ) Value (2e, 2f, or 2h)	3.60E+02	
L		i e e e e e e e e e e e e e e e e e e e	

Source Hazardous Substances	Depth (feet)	Liquid	Concent.	Units
Asbestos	> 2	NO	0.0E+00	ppm
Chromium	< 2	NO	0.0E+00	mqq
Tetrachloroethene	< 2	NO	2.3E-02	ppm
Vanadium	< 2	NO	0.0E+00	mqq
Zinc	< 2	NO	5.2E+00	ppm

PRESCORE 3.0 - PRESCORE.TCL File 07/25/94 PAGE: 4 WASTE QUANTITY Trident North Landfill - 06/02/95

3. SITE HAZARDOUS WASTE QUANTITY SUMMARY

No.	Source ID		Vol. or Area Value (2e)	Constituent or Wastestream Value (2f,2h)	Hazardous Waste Qty. Value (2k)
1	LANDFILL	GW-SW-SE-A	3.60E+02	0.00E+00	3.60E+02

PRESCORE 3.0 - PRESCORE.TCL File 07/25/94 PAGE: 5 WASTE QUANTITY

Trident North Landfill - 06/02/95

4. PATHWAY HAZARDOUS WASTE QUANTITY AND WASTE CHARACTERISTICS SUMMARY TABLE

Migration Pathway	Contaminant Value	es	HWQVs*	WCVs**
Ground Water	Toxicity/Mobility	1.00E+04	100	32
SW: Overland Flow, DW	Tox./Persistence	1.00E+04	100	32
SW: Overland Flow, HFC	Tox./Persis./Bioacc.	5.00E+04	100	32
SW: Overland Flow, Env	Etox./Persis./Bioacc.	5.00E+04	100	32
SW: GW to SW, DW	Tox./Persistence	1.00E+04	100	32
SW: GW to SW, HFC	Tox./Persis./Bioacc.	5.00E+05	100	56
SW: GW to SW, Env	Etox./Persis./Bioacc.	5.00E+06	100	100
Soil Exposure:Resident	Toxicity	1.00E+04	0	0
Soil Exposure: Nearby	Toxicity	1.00E+04	0	0
Air	Toxicity/Mobility	1.00E+02	100	10

^{*} Hazardous Waste Quantity Factor Values

SW = Surface Water

GW = Ground Water

DW = Drinking Water Threat HFC = Human Food Chain Threat Env = Environmental Threat

^{**} Waste Characteristics Factor Category Values

PAGE:

PREscore 3.0 - PRESCORE.TCL File 07/25/94 GROUND WATER MIGRATION PATHWAY SCORESHEET Trident North Landfill - 06/02/95

GROUND WATER MIGRATION PATHWAY Factor Categories & Factors	Maximum Value	Value Assigned
Likelihood of Release to an Aquifer Aquifer:		
1. Observed Release	550	0
2. Potential to Release		
2a. Containment	10	10
2b. Net Precipitation	10	3
2c. Depth to Aquifer	5	5
2d. Travel Time	35	35
2e. Potential to Release	500	420
<pre>[lines 2a(2b+2c+2d)] 3. Likelihood of Release</pre>	500	430 430
3. Likelihood of Release	550	430
Waste Characteristics		
4. Toxicity/Mobility	*	1.00E+04
5. Hazardous Waste Quantity	*	100
6. Waste Characteristics	100	32
Targets		
7. Nearest Well	50	0.00E+00
8. Population		
8a. Level I Concentrations	**	0.00E+00
8b. Level II Concentrations	**	0.00E+00
8c. Potential Contamination	**	0.00E+00
8d. Population (lines 8a+8b+8c)	**	0.00E+00
9. Resources	5	0.00E+00
10. Wellhead Protection Area	20	0.00E+00
11. Targets (lines 7+8d+9+10)	**	0.00E+00
12. Targets (including overlaying aquifers)	**	0.00E+00
13. Aquifer Score	100	0.00
GROUND WATER MIGRATION PATHWAY SCORE (Sgw)	100	0.00

^{*} Maximum value applies to waste characteristics category.
** Maximum value not applicable.

PRESCORE 3.0 - PRESCORE.TCL File 07/25/94 PAGE SURFACE WATER OVERLAND/FLOOD MIGRATION COMPONENT SCORESHEET Trident North Landfill - 06/02/95 PAGE:

SURFACE WATER OVERLAND/FLOOD MIGRATION COMPONENT Factor Categories & Factors DRINKING WATER THREAT	Maximum Value	Value Assigned
Likelihood of Release		
1. Observed Release	550	О
2. Potential to Release by Overland Flow 2a. Containment	10	10
2b. Runoff	25	1
2c. Distance to Surface Water	25	20
2d. Potential to Release by Overland	500	210
Flow [lines 2a(2b+2c)]		
3. Potential to Release by Flood		
3a. Containment (Flood)	10	10
3b. Flood Frequency	50	25
3c. Potential to Release by Flood (lines 3a x 3b)	500	250
4. Potential to Release (lines 2d+3c)	500	460
5. Likelihood of Release	550	460
Waste Characteristics		
6. Toxicity/Persistence	*	1.00E+04
7. Hazardous Waste Quantity	*	100
8. Waste Characteristics	100	32
Targets		
9. Nearest Intake	50	0.00E+00
10. Population		
10a. Level I Concentrations	**	0.00E+00
10b. Level II Concentrations	**	0.00E+00
10c. Potential Contamination 10d. Population (lines 10a+10b+10c)	**	0.00E+00 0.00E+00
111. Resources	5	5.00E+00
12. Targets (lines 9+10d+11)	**	5.00E+00
13. DRINKING WATER THREAT SCORE	100	0.89

^{*} Maximum value applies to waste characteristics category. ** Maximum value not applicable.

PRESCORE 3.0 - PRESCORE.TCL File 07/25/94 PAGE: SURFACE WATER OVERLAND/FLOOD MIGRATION COMPONENT SCORESHEET Trident North Landfill - 06/02/95

SURFACE WATER OVERLAND/FLOOD MIGRATION COMPONENT Factor Categories & Factors HUMAN FOOD CHAIN THREAT	Maximum Value	Value Assigned
Likelihood of Release		
14. Likelihood of Release (same as line 5)	550	460
Waste Characteristics		
15. Toxicity/Persistence/Bioaccumulation 16. Hazardous Waste Quantity 17. Waste Characteristics	* * 1000	5.00E+04 100 32
Targets		
18. Food Chain Individual 19. Population 19a. Level I Concentrations 19b. Level II Concentrations 19c. Pot. Human Food Chain Contamination 19d. Population (lines 19a+19b+19c) 20. Targets (lines 18+19d)	50 ** ** ** **	2.00E+00 0.00E+00 0.00E+00 3.30E-04 3.30E-04 2.00E+00
21. HUMAN FOOD CHAIN THREAT SCORE	100	0.36

^{*} Maximum value applies to waste characteristics category.
** Maximum value not applicable.

PRESCORE 3.0 - PRESCORE.TCL File 07/25/94 PAGE: SURFACE WATER OVERLAND/FLOOD MIGRATION COMPONENT SCORESHEET Trident North Landfill - 06/02/95

SURFACE WATER OVERLAND/FLOOD MIGRATION COMPONENT Factor Categories & Factors ENVIRONMENTAL THREAT	Maximum Value	Value Assigned
Likelihood of Release		
22. Likelihood of Release (same as line 5)	550	460
Waste Characteristics		
23. Ecosystem Toxicity/Persistence/Bioacc. 24. Hazardous Waste Quantity 25. Waste Characteristics	* * 1000	5.00E+04 100 32
Targets		
26. Sensitive Environments 26a. Level I Concentrations 26b. Level II Concentrations 26c. Potential Contamination 26d. Sensitive Environments (lines 26a+26b+26c) 27. Targets (line 26d)	** ** ** **	0.00E+00 0.00E+00 5.00E+00 5.00E+00
28. ENVIRONMENTAL THREAT SCORE	60	0.89
29. WATERSHED SCORE	100	2.14
30. SW: OVERLAND/FLOOD COMPONENT SCORE (Sof)	100	2.14

^{*} Maximum value applies to waste characteristics category.
** Maximum value not applicable.

PRESCORE 3.0 - PRESCORE.TCL File 07/25/94 PAGE: GROUND WATER TO SURFACE WATER MIGRATION COMPONENT SCORESHEET Trident North Landfill - 06/02/95

GROUND WATER TO SURFACE WATER MIGRATION COMPONENT Factor Categories & Factors DRINKING WATER THREAT	Maximum Value	Value Assigned
Likelihood of Release to Aquifer Aquifer:		
 Observed Release Potential to Release Containment 	550 10	0 10
2b. Net Precipitation 2c. Depth to Aquifer 2d. Travel Time	10 5 35	3 5 35
2e. Potential to Release[lines 2a(2b+2c+2d)]3. Likelihood of Release	500 550	430 430
Waste Characteristics		
4. Toxicity/Mobility/Persistence 5. Hazardous Waste Quantity 6. Waste Characteristics	* * 100	1.00E+04 100 32
Targets		
7. Nearest Intake 8. Population	50	0.00E+00
8a. Level I Concentrations 8b. Level II Concentrations 8c. Potential Contamination 8d. Population (lines 8a+8b+8c) 9. Resources	** ** ** 5	0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.00E+00
10. Targets (lines 7+8d+9)	**	5.00E+00
11. DRINKING WATER THREAT SCORE	100	1.07

^{*} Maximum value applies to waste characteristics category.
** Maximum value not applicable.

PRESCORE 3.0 - PRESCORE.TCL File 07/25/94 PAGE GROUND WATER TO SURFACE WATER MIGRATION COMPONENT SCORESHEET PAGE: Trident North Landfill - 06/02/95

GROUND WATER TO SURFACE WATER MIGRATION COMPONENT Factor Categories & Factors HUMAN FOOD CHAIN THREAT	Maximum Value	Value Assigned
Likelihood of Release		
12. Likelihood of Release (same as line 3)	550	430
Waste Characteristics		
13. Toxicity/Mobility/Persistence/Bioacc. 14. Hazardous Waste Quantity 15. Waste Characteristics	* * 1000	5.00E+05 100 56
Targets		
16. Food Chain Individual 17. Population 17a. Level I Concentrations 17b. Level II Concentrations 17c. Pot. Human Food Chain Contamination 17d. Population (lines 17a+17b+17c) 18. Targets (lines 16+17d)	50 ** ** ** **	0.00E+00 0.00E+00 0.00E+00 1.50E-05 1.50E-05
19. HUMAN FOOD CHAIN THREAT SCORE	100	0.00

^{*} Maximum value applies to waste characteristics category. ** Maximum value not applicable.

PRESCORE 3.0 - PRESCORE.TCL File 07/25/94 PAGE GROUND WATER TO SURFACE WATER MIGRATION COMPONENT SCORESHEET PAGE: Trident North Landfill - 06/02/95

GROUND WATER TO SURFACE WATER MIGRATION COMPONENT Factor Categories & Factors ENVIRONMENTAL THREAT	Maximum Value	Value Assigned
Likelihood of Release		
20. Likelihood of Release (same as line 3)	550	430
Waste Characteristics		
21. Ecosystem Tox./Mobility/Persist./Bioacc. 22. Hazardous Waste Quantity 23. Waste Characteristics Targets	* * 1000	5.00E+06 100 100
24. Sensitive Environments 24a. Level I Concentrations 24b. Level II Concentrations 24c. Potential Contamination 24d. Sensitive Environments (lines 24a+24b+24c) 25. Targets (line 24d)	** ** ** **	0.00E+00 0.00E+00 3.00E+00 3.00E+00
26. ENVIRONMENTAL THREAT SCORE	60	2.00
27. WATERSHED SCORE	100	3.07
28. SW: GW to SW COMPONENT SCORE (Sgs)	100	3.07

^{*} Maximum value applies to waste characteristics category.
** Maximum value not applicable.

PRESCORE 3.0 - PRESCORE.TCL File 07/25/94 PAGE: SOIL EXPOSURE PATHWAY SCORESHEET Trident North Landfill - 06/02/95

SOIL EXPOSURE PATHWAY Factor Categories & Factors RESIDENT POPULATION THREAT	Maximum Value	Value Assigned
Likelihood of Exposure		
1. Likelihood of Exposure	550	550
Waste Characteristics		
2. Toxicity 3. Hazardous Waste Quantity 4. Waste Characteristics	* * 100	1.00E+04 0 0
Targets		
5. Resident Individual 6. Resident Population	50	0.00E+00
6a. Level I Concentrations	**	0.00E+00
6b. Level II Concentrations	**	0.00E+00
6c. Resident Population (lines 6a+6b)	**	0.00E+00
6c. Resident Population (lines 6a+6b) 7. Workers	** 15	0.00E+00 5.00E+00
6c. Resident Population (lines 6a+6b) 7. Workers 8. Resources	** 15 5	0.00E+00 5.00E+00 0.00E+00
6c. Resident Population (lines 6a+6b) 7. Workers	** 15	0.00E+00 5.00E+00

^{*} Maximum value applies to waste characteristics category.

** Maximum value not applicable.

*** No specific maximum value applies, see HRS for details.

PAGE:

PREscore 3.0 - PRESCORE.TCL File 07/25/94 SOIL EXPOSURE PATHWAY SCORESHEET Trident North Landfill - 06/02/95

SOIL EXPOSURE PATHWAY Factor Categories & Factors NEARBY POPULATION THREAT	Maximum Value	Value Assigned
Likelihood of Exposure		
12. Attractiveness/Accessibility 13. Area of Contamination 14. Likelihood of Exposure	100 100 500	5.00E+00 1.00E+02 5.00E+01
Waste Characteristics		
15. Toxicity 16. Hazardous Waste Quantity 17. Waste Characteristics	* * 100	1.00E+04 0 0
Targets		
18. Nearby Individual 19. Population Within 1 Mile 20. Targets (lines 18+19)	1 ** **	1.00E+00 2.70E-01 1.27E+00
21. NEARBY POPULATION THREAT SCORE	**	0.00E+00
SOIL EXPOSURE PATHWAY SCORE (Ss)	100	0.00

^{*} Maximum value applies to waste characteristics category. ** Maximum value not applicable.

AIR MIGRATION PATHWAY Factor Categories & Factors	Maximum Value	Value Assigned
Likelihood of Release		
1. Observed Release 2. Potential to Release 2a. Gas Potential to Release 2b. Particulate Potential to Release 2c. Potential to Release	550 500 500 500	0 280 280 280
3. Likelihood of Release	550	280
Waste Characteristics		
 Toxicity/Mobility Hazardous Waste Quantity Waste Characteristics 	* * 100	1.00E+02 100 10
Targets		
7. Nearest Individual 8. Population	50	2.00E+01
8a. Level I Concentrations 8b. Level II Concentrations	** **	0.00E+00 0.00E+00
8c. Potential Contamination 8d. Population (lines 8a+8b+8c)	**	1.20E+01 1.20E+01
9. Resources 10. Sensitive Environments	5	0.00E+00
10a. Actual Contamination 10b. Potential Contamination 10c. Sens. Environments(lines 10a+10b) 11. Targets (lines 7+8d+9+10c)	* * * * * * * * *	0.00E+00 0.00E+00 0.00E+00 3.20E+01
AIR MIGRATION PATHWAY SCORE (Sa)	100	1.09E+00

^{*} Maximum value applies to waste characteristics category.

** Maximum value not applicable.

*** No specific maximum value applies, see HRS for details.

NFRATOS 8-11-95 Raph Ottown.

SITE INSPECTION PRIORITIZATION TRIDENT NORTH LANDFILL BERKELEY COUNTY SCD 980 558 233

Completed By: Peter N. Koufopoulost

Reviewed By: Robert B. Cole

Site Screening Section

Bureau of Solid & Hazardous Waste Management

South Carolina Department of Health & Environmental Control

2600 Bull Street

Columbia, SC 29201

Date Completed: June 5, 1995

TABLE OF CONTENTS

I.	SCOPE OF WORK1
п.	INTRODUCTION/EXECUTIVE SUMMARY
m.	SITE DESCRIPTION, HISTORY AND WASTE CHARACTERISTICS 2
	A. Background
	B. Site Location and Description
	C. Previous Investigations
	D. Operational History and Waste Characteristics
IV.	GROUNDWATER PATHWAY4
V.	SURFACE WATER4
	A. Hydrologic Setting
	B. Surface Water Targets4
	C. Surface Water Impact
VI.	SOIL EXPOSURE AND AIR PATHWAY
	A. Physical Setting
	B. Soil and Air Targets
	C. Soil and Air Impact
VII.	SUMMARY AND CONCLUSIONS7
VIII.	FIGURES8
IX.	REFERENCES

I. SCOPE OF WORK

In March 1991, the United States Environmental Protection Agency (USEPA) began implementation of significant revisions in the Hazard Ranking System (HRS) used to evaluate sites for inclusion on the National Priority List (NPL) for Superfund action. Because of the extent of the changes, sites that have had CERCLA Site Inspections (SI) completed prior to full implementation of the Revised HRS may be lacking the required data necessary to evaluate the site. A Site Inspection Prioritization (SIP) is designed to evaluate the data gaps, update existing file information and determine if the site may be a potential NPL candidate. This SIP consists of a file review, and did not include a site visit or sampling.

II. INTRODUCTION/EXECUTIVE SUMMARY

The Trident North Landfill is located on State Road 16, approximately one mile southwest of Interstate 26, in Jedburg, South Carolina. The landfill lies along the county line, with portions in both Berkeley and Dorchester Counties. The facility began operations in 1979, disposing of mostly inert bulk material. Fuel oil, wastewater treatment and grinding sludges were deposited in the original closed-out cell. Since 1980, Browning-Ferris Industries has assumed operations at the landfill. The other cells of the landfill, operating solely under BFI, are permitted for municipal and industrial waste; however, no hazardous waste disposal is allowed.

In March of 1991, the NUS Corporation completed an SI on the Trident North Landfill at the request of the EPA. The SI focused on the original cell operated by Trident Sanitation Services, Inc. As part of the SI, 21 samples were collected: six surface soil, six subsurface soil, four sediment, four monitoring well and two private well samples. Tetrachloroethene was found in on-site surface soil samples. Manganese and cobalt were found in sediment samples; and lead was detected in groundwater samples.

An estimated 1,773 people utilize groundwater within four miles of the site. Based on topographic maps, the closest drinking water well is approximately 800 feet east of the facility. Elevated lead was detected within this private well. The closest municipal well is approximately 1.5 miles southwest of the site.

Based on topographic maps, runoff from the site would probably enter one of two creeks; the Kelly Branch located along the northern border, and the Stanley Branch located along the southern border of the landfill. The branches are the probable points of entry. Cobalt and manganese were elevated within sediment samples, compared to their backgrounds. The branches would flow an estimated 1.7 miles westward toward the Cypress Swamp. No surface water intakes lie within the downgradient watershed of the site. The Cypress Swamp is the start of the downstream fishery and wetlands area.

Access to the site is only restricted by fencing along the western border and a locked gate at the entrance. The facility employs approximately 50 people. Tetrachloroethene was the only elevated constituent in on-site surface soils.

Due to the low level of on-site contamination and a limited number of targets in all pathways, the Trident North Landfill is given a low priority for further Federal Superfund activities. It is recommended that the Solid Waste Division of the Bureau of Solid and Hazardous Waste Management continue its routine groundwater monitoring of the site.

III. SITE DESCRIPTION, HISTORY AND WASTE CHARACTERISTICS

A. Background

Ownership History:

Unknown to 1979 J. M. Hodge Route 4, Box 329 Summerville, SC 29483

1979 to Present Landent Realty 237 Confederate Circle Charleston, SC 29407

(Ref. 1)

Operator History:

1979 to 1980 Trident Sanitation Services, Inc. 1934 Summerville Avenue Charleston Heights, SC 29405

1980 to Present Browning-Ferris Industries (BFI)

> 237 Farmington Road Summerville, SC 29483

8607 Roberts Drive, Suite 100 Atlanta, GA 30350 (Ref.1)

B. Site Location and Description

The Trident North Landfill is located on State Road 16, approximately one mile southwest of Interstate 26, in Jedburg, South Carolina. The site lies within both Berkeley and Dorchester Counties. The site is surrounded by wooded and residential properties (Ref.2). The coordinates at the center of the site are 33 degrees, 4 minutes, 6.1 seconds north latitude and 80 degrees, 12 minutes, 46.7 seconds west longitude (Ref.3).

The landfill is approximately 150 acres and lies atop a ridge which runs east to west and gently slopes to the south and north. The site is only partially fenced; however, the entrance to the landfill has a locked gate. Kelly Branch is located to the north, and Stanley Branch is located to the south; both bound the facility. Both branches flow westward toward the Cypress Swamp (Ref.2,4).

C. Previous Investigations

In August of 1987, SCDHEC completed a Preliminary Assessment on the landfill (Ref.5). In March of 1989, an update to the Preliminary Assessment was completed by SCDHEC. The update recommended further action to determine the extent of any possible groundwater contamination based on elevated levels of TOC and chromium found in 1981 analytical results from routine sampling (Ref.1). In March of 1991, the NUS Corporation completed an SI on the Trident North Landfill at the request of the EPA. As part of the SI, 21 samples were collected: six surface soil, six subsurface soil, four sediment, four monitoring well and two private well samples (Ref.4).

D. Operational History and Waste Characteristics

The landfill has been in operation since 1979. Trident Services operated the site for approximately one year. Most of the waste present in the landfill is inert bulk material such as asbestos, concrete and lumber (Ref.6). On two occasions the landfill was allowed to accept fuel oil sludge, and on one occasion was permitted to bury wastewater treatment plant sludge. In 1980, permission was granted to bury grinding sludge reported to contain chromium, molybdenum and vanadium. The original cell operated by Trident Services is approximately 306,500 cubic yards (Ref.4).

The Trident North Landfill is not listed as a RCRA Generator (Ref.7). The following source was used to characterize the site:

• Landfill -- Over 900,000 yds³ of material containing various sludges with unknown constituents. Based on NUS calculations for the entire landfill (Ref.4).

IV. GROUNDWATER PATHWAY

Routine monitoring of the six on-site wells has shown no elevated levels of chromium or lead in groundwater since 1991 (Ref.8). A 200 foot confining unit lies approximately 75 feet below the landfill (Ref.9). The municipal wells and most private wells are screened below the confining unit (Ref.10,11). There are approximately 1,773 people using groundwater within the four mile radius (Ref.2). Due to the lack of contamination and the presence of a confining unit, the groundwater pathway will not be evaluated.

V. SURFACE WATER

A. Hydrologic Setting

Based on topographic maps, the runoff from the landfill will flow toward one of two perennial creeks; Kelly Branch, north of the site, and Stanley Branch, south of the site. Both branches, the probable points of entry (PPE), flow westward, approximately 1.7 miles toward the Cypress Swamp. The Kelly Branch flows into the Stanley Branch an estimated 500 feet from the swamp (Ref.2).

The Cypress Swamp flows from north to south, with an average flow rate of 92 cubic feet per second (cfs). The Ashley River starts approximately ten miles downstream with a flow rate >100 to <1000 cfs at the headwaters. The Ashley River completes the 15 mile downstream segment. The flow rate for the swamp was determined by multiplying the drainage area to a region specific flow contribution factor of 0.8 cfs/mi² (Ref.2,12). The Ashley River flow rate is an assumption based on increased flow ten miles downstream.

The Trident North Landfill lies outside the 500 year flood plain (Ref. 13). The 2-year, 24-hour maximum rainfall value is 4.25 inches for the center of both Berkeley and Dorchester Counties (Ref. 14).

B. Surface Water Targets

The Cypress Swamp sustains recreational fishing (Ref.4). No Federally endangered species reside along the 15 mile target distance limit (Ref.15). According to the topographic map, there are an estimated 23 frontage miles of wetlands starting at the branch/swamp confluence (Ref.2). No surface water intakes lie within the downgradient watershed of the site (Ref.16).

C. Surface Water Impact

As part of the 1991 NUS SI, four surface water sediment samples were collected. Samples were taken from both Kelly Branch and Stanley Branch. One background and one downgradient sample were taken on each branch. No organics were detected in the downstream sediment samples. Kelly Branch had elevated levels of manganese; while the Stanley Branch results showed elevated cobalt. None of these inorganics were elevated in on-site sampling (Ref.4).

Based on sample location and description, the NUS SI reversed the designation of the sediment background and downstream sample. Samples TL-SD-02 and TL-SD-04 are being used as the background sediment samples for this evaluation. The SI also stated that the branches were dry during the investigation. For this report, the branches are assumed to be perennial based on the topographic map.

VI. SOIL EXPOSURE PATHWAY & AIR PATHWAY

A. Physical Setting

The site crests at the center; the ridge runs east to west, sloping to the north and south toward surface water. The facility consists of three cells, two closed and one active. Only the western perimeter is fenced and the main gate is locked (Ref.2,4,Fig.1).

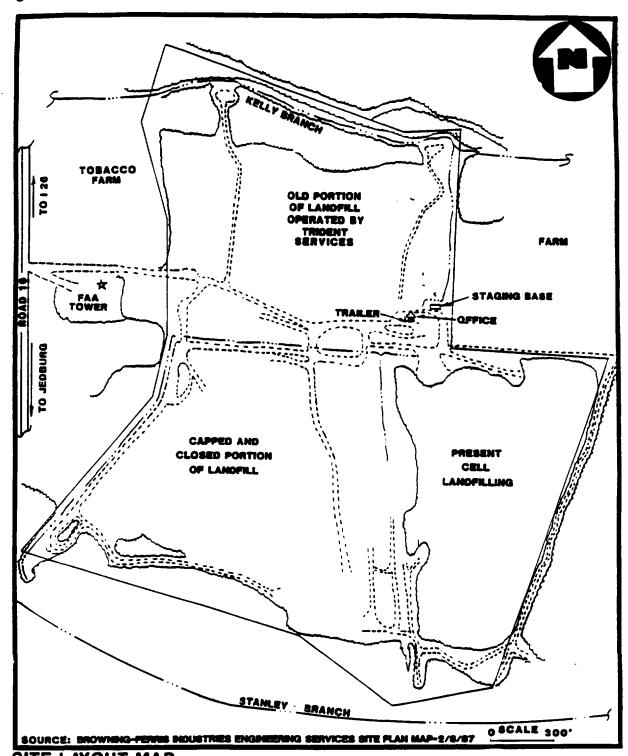
B. Soil and Air Targets

The nearest resident is located approximately 800 feet east of the site. No day care centers or schools are located within 200 feet of the site (Ref.2,17). The Red-cockaded Woodpecker, *Picoides borealis*, has been observed within one mile of the site. The total population within a four mile radius of the site is approximately 18,273 (Ref.18). The population estimates are characterized by the following table:

TABLE I: Population Information Within Four Miles of the Trident North Landfill*		
Radii (miles)	Berkeley/Dorchester County	
On-site	50**	
0 - 1/4	31	
> 1/4 - 1/2	92	
> ½ - 1	175	
> 1 - 2	1,013	
> 2 - 3	3,361	
> 3 - 4	13,601	
Total:	18,323	

^{*}Population based on census information assigned to each individual census tract (Ref.18)

C. Soil and Air Impact


No air monitoring has been conducted at the facility (Ref.19). During the NUS SI, six surface soil and four sediment samples were collected including the backgrounds. Tetrachloroethene was detected in surface soil samples TL-SS-02 (23ppb) and TL-SS-03 (11ppb); Zinc was the only inorganic elevated in surface soil sample TL-SS-03 (5.2ppm) (Ref.4). Neither are above a health-based benchmark (Ref.20). Soil borings revealed no compounds above background levels (Ref.4). Due to the rural location of the landfill and type of operation conducted at the site, any soil exposure would be limited to on-site workers.

^{**}Estimation of on-site workers.

VII. SUMMARY AND CONCLUSIONS

Landfill operations have been occurring on-site since 1979. Mostly inert bulk material has been deposited within the cells for disposal. Reported isolated incidents of sludge disposal occurred when the landfill was operating under Trident Sanitation Services, Inc. The current permits for which BFI operate do not allow any disposal of hazardous waste.

The site has minimal detected contamination and a limited number of targets in all pathways. The Trident North Landfill is given a low priority for further Federal Superfund activities. It is recommended that the Solid Waste Division of the Bureau of Solid and Hazardous Waste Management continue its routine groundwater monitoring of the site.

SITE LAYOUT MAP TRIDENT NORTH LANDFILL JEDBURG, BERKELEY / DORCHESTER COUNTIES, SOUTH CAROLINA

FIGURE 1

VIII. REFERENCES

- 1. Nix, David W, SCDHEC, Preliminary Assessment Update Report completed on the Trident North Landfill. March 10, 1989. Copy attached.
- 2. United States Geological Survey Topographic Maps. (Including waterline maps)

Clubhouse Crossroads, SC	7.5 minute series	1979
Ridgeville, SC	7.5 minute series	1979
Stallsville, SC	7.5 minute series	1979
Summerville, SC	7.5 minute series	1990
Summerville NW, SC	7.5 minute series	1990

- 3. Koufopoulos, Peter, SCDHEC, memorandum to Trident North Landfill file regarding latitude/longitude calculations. Copy attached.
- 4. NUS Corporation, Superfund Division, Screening Site Inspection completed for the Trident North Landfill. March 4, 1991. Copy attached.
- 5. Dukes, Craig, SCDHEC, Preliminary Assessment completed for the Trident North Landfill (Browning Ferris Industries). August 25, 1987. Copy attached.
- 6. Permit to operate an Industrial Solid Waste Disposal Facility issued by SCDHEC to Trident Sanitation Services, Inc. August 30, 1979. Copy attached.
- 7. RCRA Facilities in South Carolina. Printout within Site Screening Section, SCDHEC. August 24, 1993.
- 8. Ground Water Services, BFI, Statistical Analysis and Annual Report of Ground Water for Jedburg Landfill (Trident North Landfill). April 1994. Copy attached.
- 9. Canova, Judy, SCDHEC, memorandum to John Cresswell, SCDHEC, regarding Hydrogeologic Review of the Trident North Landfill. December 7, 1988. Copy attached.
- 10. SCDHEC, Bureau of Drinking Water Protection, Inventory of Public Water Supply Systems. Berkeley County. Printout, page 780. November 30, 1992.
- 11. SCDHEC, Bureau of Drinking Water Protection, Inventory of Public Water Supply Systems. Dorchester County. Printout, page 1962. November 30, 1992.

- 12. SCDHEC, Bureau of Solid and Hazardous Waste Management. Map of projected cubic feet per second of flow per square mile of drainage area. Based on 1991 USGS water monitoring data. Copy attached.
- 13. National Flood Insurance Program. Flood Maps for Berkeley County, Panel 270 of 410, and Dorchester County, Panel 235 of 330. September 30, 1983 and April 15, 1994 respectively.
- 14. SCWRC, State Climatologist Rainfall Figures by County. Statistical 2-year, 24-hour rainfall for Berkeley and Dorchester Counties.
- 15. SC Heritage Trust Foundation, database of Endangered Species. Berkeley and Dorchester Counties. January 1992. Copy attached.
- 16. SCDHEC, Bureau of Drinking Water Protection. Surface Water Treatment Intakes Map for South Carolina. Revised June 1994. Copy attached.
- 17. SC Department of Social Services (SCDSS). Division of Program Quality Assurance. Child Day Care Regulatory Unit. 1993.
- 18. SCDHEC, Map generated for the Trident North Landfill, Berkeley/Dorchester County.

 January 25, 1995. Copy attached.
- 19. SCDHEC, Bureau of Air Quality. Master List of Air Permits. Printout within Site Screening Section, SCDHEC. March 1995.
- 20. Superfund Chemical Data Matrix. Appendix B Tables. June 1994.

PRELIMINARY ASSESSMENT UPDATE REPORT
TRIDENT NORTH LANDFILL
SCD 980 558 233
BERKELEY/DORCHESTER COUNTY
SOUTH CAROLINA

Prepared By:
David W. Nix
Bureau of Solid and Hazardous Waste Management
South Carolina Department of Health and Environmental Control

Submitted to the Environmental Protection Agency on: March 10, 1989

PRELIMINARY ASSESSMENT UPDATE TRIDENT NORTH LANDFILL SCD 980 558 233 TABLE OF CONTENTS

		<u>Page</u>
ı.	EXECUTIVE SUMMARY	1
II.	SITE BACKGROUND AND HISTORY	1
	A. Ownership History B. Site Description C. Regulatory History and RCRA Summary D. Process and Waste Disposal History E. Remedial and Removal Actions F. Demography and Regional Setting	1 1 2 2 2 2 2
III.	GROUNDWATER PATHWAY	3
	A. Regional Hydrogeology B. Ground Water Use C. Ground Water Impact	3 4 4
IV.	SURFACE WATER PATHWAY	5
	A. Regional Characteristics B. Surface Water Use C. Surface Water Impact	5 5 5
v.	AIR PATHWAY	5
VI.	ON-SITE EXPOSURE	5
	A. Direct Contact Mode B. Fire and Explosion Mode	5 6
VII.	CONCLUSIONS AND RECOMMENDATIONS	6
VIII.	REFERENCES	6

I. EXECUTIVE SUMMARY

The Trident North Landfill (BFI - Jedburg Landfill) is located along the Berkeley-Dorchester County line. The site is presently operated by Browning-Ferris Industries of South Atlantic, Inc.

The landfill occupies about 150 acres northeast of Summerville, South Carolina. Permits have been issued for industrial inert waste (TWP-163) and for normal domestic waste (DWP-129). The landfill has operated since 1979.

In 1980, chromium was found to exceed Federal Drinking Water standards in monitoring well #2, and in 1986, levels of Total Organic Carbon became elevated in monitoring wells. Because of the elevated levels of TOC, testing for volatile organic compounds was performed in 1988 as required by the Solid Waste Permitting Section of DHEC. This testing gave negative results, but this does not exclude the possibility that some non-volatile organic chemicals could be responsible for the elevated levels of Total Organic Carbon. Because of the contamination with chromium and the uncertainty surrounding the impact on groundwater quality from organic chemicals from this site, the Trident North Landfill is recommended for a Screening Site Investigation with a High Priority.

II. SITE BACKGROUND AND HISTORY

A. Ownership History

The 150 acre site of the Trident North Landfill (BFI Jedburg Landfill) was originally owned by Mr. J.M. Hodge (Rt. 4, Box 329, Summerville, SC 29483). Mr. Hodge sold the property to Landent Realty (A Partnership, 237 Confederate Circle, Charleston, SC 29407) in 1979 (Ref. 1, 2, 3).

Landent Realty leased the property to Trident Services, Inc. (1934 Summerville Avenue, Charleston Heights, SC 29405) for use as an Industrial Waste Landfill. Trident Services, Inc. was granted a permit to operate an industrial waste landfill (IWP-169) by SCDHEC on August 30, 1979 (Ref. 1, 6). Trident Services operated the landfill from 1979 until some time in 1980 when Browning Ferris Industries of South Atlantic purchased Trident Services and assumed operation of the landfill (Ref. 7). Browning Ferris Industries (BFI) operated the landfill under the industrial waste permit (IWP-163) from 1980 until a permit modification to accept domestic waste was granted for the Dorchester County portion of the landfill in 1984 (Ref. 8, 9, 10). In 1987, SCDHEC issued a new permit, DWP-129, for domestic waste disposal at the landfill (Ref. 11).

B. Site Description

The Trident North/BFI Jedburg landfill is located along State Road 16 approximately one mile southwest of Interstate 26 (Ref 1). The site lies on the Berkeley-Dorchester County line with about 60% of the landfill located in Dorchester County (Ref. 12). The landfill occupies approximately 150 acres (Ref. 3). The geographic coordinates for the

center of the landfill are 080 degrees, 12 minutes, and 44.0 seconds West longitude and 33 degrees, 04 minutes and 07.0 seconds North latitude (Ref. 12).

Prior to 1979, the site was cultivated agricultural land (Ref. 1). The site lies atop a ridge which runs east-west and which gently slopes to the south and north. Two creeks act as northern and southern boundaries. Kelly Branch is located to the north and drains into Cypress Swamp 1.9 miles downstream. Stanley Branch is located to the south and drains into Cypress Swamp about 2.0 miles downstream. Runoff from the site will flow into either Kelly Branch or Stanley Branch (Ref. 12). There is a 200 foot buffer zone maintained between the landfill boundary and the two streams (Ref. 13).

C. Regulatory History and RCRA Summary

The Trident North Landfill has never had any RCRA involvement with its operations.

The landfill has been inspected many times by the Trident District Solid Waste Consultant, John D. Ohlandt, with no significant problems encountered. An allegation of night dumping in 1984 was found to be unmerited upon investigation. No hazardous conditions, spills or other incidents have been reported at the landfill (Ref. 1).

D. Process and Waste Disposal History

Most of the waste present in the landfill is inert bulk materials such as lumber, concrete, metal bands, cardboard, shingles, tires, empty drums and asbestos. Department records show that on two occasions the landfill was allowed to accept fuel oil sludges, and on one occasion burial of a wastewater treatment plant sludge was permitted (Ref. 1, 2, 6, 8, 11). In 1980, permission was granted by DHEC for burial of grinding sludge from a ball-bearing manufacturer. The grinding sludge reportedly contained alloys of steel, chromium, molybdenum and vanadium (Ref. 1, 14).

Since 1984, the Berkeley County side of the landfill has been permitted (DWP-129) for the disposal of domestic waste. No hazardous wastes are allowed to be buried in this section of the landfill as per permit requirements (Ref. 10).

E. Remedial and Removal Actions

There have been no remedial or removal actions associated with the Trident North Landfill.

F. Demography and Regional Setting

The Trident North Landfill is located in a rural area Northwest of Summerville, South Carolina, with portions of the landfill located in both Berkeley and Dorchester Counties (Ref. 12).

Based on topographic map analysis, there are approximately 4275 people living within a three-mile radius of the site. Also within the 3-mile radius is about one-third of the town of Summerville (population 6863; 1980 Census), yielding an additional estimated 2288 people within the 3-mile radius for a total of 6563 people. According to Summerville city officials, the population of the town has more than quadrupled since 1980, therefore, the estimate of 6563 people within the 3-mile radius may be grossly underestimated (Ref. 1, 12).

The site is located within 2500 feet of the J.E. Locklair Jr. Memorial Airport, and as a condition of operation, the Federal Aviation Administration must review and approve all applications and permits for waste disposal at the site. This is to insure that waste accepted at the landfill does not attract birds which could present a hazard to airplane traffic at the airport (Ref. 4, 12).

III. GROUNDWATER PATHWAY

A. Regional Hydrogeology

The geologic units of concern underlying the site are the shallow undifferentiated Pleistocene Sands (depth = 0 - 75 ft), the Cooper Formation (depth = 75 - 275 ft), and the Santee Formation (depth = 275 - 500 ft) (Ref. 15).

The Pleistocene sands are a heterogenous mixture of sands and silts with an approximate hydraulic conductivity of 1×10^{-3} cm/sec. These sands comprise the unsaturated zone and the shallow aquifer unit (Ref 15).

The Cooper Formation is composed of silts, silty clays and clays with an approximately hydraulic conductivity of 1×10^{-7} cm/sec. The Cooper Formation forms a hydraulic barrier between the Pleistocene sands and the Santee Formation (Ref. 15).

The Santee Formation is a fossiliferous limestone with an approximate hydraulic conductivity of 1×10^{-3} cm/sec. The Santee Formation is the major source of privately supplied potable water in the area (Ref. 15).

Neither the shallow sands nor the Santee Formation are sole source aquifers (Ref. 15).

The depth to groundwater in the shallow sands is approximately 20 feet, based on water level measurements from on-site monitoring wells (Ref. 15).

The predominant groundwater flow direction in the shallow sands breaks to both the north and south towards Kelly Branch and Stanley Branch (Ref. 15). The general groundwater flow direction in the Santee Limestone is towards the south-southeast (Ref. 16).

B. Ground Water Use

A well inventory within a radius of four-miles of the site revealed that groundwater use from the Santee Limestone consists of private domestic supply wells. The nearest private residence well is 200 feet east of the site. The nearest public supply well is 2500 feet north of the site (Ref. 5, 12, 15).

There are 576 houses within the four-mile radius that rely on groundwater for their potable drinking water as determined from a topographic map analysis of water line distribution areas. Assuming 3.8 people per household the 576 houses yields a population of 2188.8 for the four-mile radius (Ref. 12).

Based upon water-line distribution and analysis of demographics from the topographic maps, there are (at least) approximately 1448 people within the 3-mile radius who rely on private wells for potable water. The Dorchester County Water Authority Administrator, Oscar Black, has stated that, to his knowledge, private wells in the area are at least 300 feet deep (Ref. 1).

The Dorchester County Water Authority supplies water to approximately 1900 individuals from two municipal wells within the three-mile radius of the site (Ref. 1).

The City of Summerville also draws water from a well within the 3-mile radius. Water from this well is mixed with water from other sources from outside the 3-mile radius. The City of Summerville water system serves 47,500 people (Ref. 1).

Public supply wells are screened in the Santee Limestone and Black Mingo aquifers, with the most shallow well at 386 feet deep (Ref. 1).

C. Ground Water Impact

Since 1980, the shallow groundwater has been monitored at the site. Problems with the groundwater have been detected beginning with elevated levels of chromium in 1981 (Ref. 20). In 1988, monitoring well samples were tested for volatile organic compounds because of elevated TOC results with no volatile organics detected (Ref. 20). No testing was done for semivolatile compounds or pesticides at this time. TOC is an indication of the non-volatile Organic Carbon content, therefore, testing should have been performed for the non-volatile organic compounds (Ref. 17).

Since thorough testing for organic chemical contamination was not done, an accurate assessment of the severity of the impact of the Trident North/BFI Jedburg Landfill on groundwater cannot be accomplished. Levels of heavy metals, such as chromium, have not exceeded Federal Drinking Water standards since the 1981 incident. Resampling of the monitoring wells should be undertaken with volatile organics, semi-volatile organics and pesticides included in the testing program. Until such testing is

performed, it will not be possible to determine the severity of the threat to the groundwater in the area, and because of this uncertainty the Trident North/BFI Jedburg Landfill should be scheduled for a Screening Site Investigation with a High Priority.

٠٠.

IV. SURFACE WATER PATHWAY

A. Regional Characteristics

Surface water runoff from the site will enter drainage ditches and discharge into both Kelly Branch to the north and Stanley Branch to the south. These branches merge to the west of the site and drain into Cypress Swamp. Cypress Swamp is the source of the Ashley River (Ref. 12).

B. Surface Water Use

The fifteen-mile distance limit is located on the headwaters of the Ashley River south of Summerville. There are no surface water intakes located along the 15-mile distance of the river (Ref. 12, 18).

There are several small ponds along the surface water pathway which have road access and may be used for recreational fishing (Ref. 12).

There are no endangered species identified along the surface water pathway (Ref. 19).

C. Surface Water Impact

There are two creeks adjacent to the landfill which are fed by runoff and the shallow groundwater aquifer. Leachate discharges from the landfill would enter one of these creeks. There are no known surface water intakes within 15-miles downstream from the site. The site affects only one watershed (Ref. 12).

V. AIR PATHWAY

No evaluation of the potential for releases of hazardous substances to the atmosphere has been made for the Trident North Landfill.

VI. ON-SITE EXPOSURE

A. Direct Contact Mode

The Trident North Landfill is secured and access is controlled so that there should not be any potential danger to the public for direct contact with waste deposited at the site (Ref. 11).

B. Fire and Explosion Mode

The landfill is maintained according to standards required by State law and receives daily cover, thereby making the threat of a fire or explosion negligible (Ref. 11).

A** . . .

VII. CONCLUSIONS AND RECOMMENDATIONS

Because of the contamination of groundwater with chromium and the uncertainty surrounding the potential for groundwater contamination with organic chemicals from the Trident North/BFI Jedburg Landfill, the site is recommended for a Screening Site Investigation with a High Priority.

VIII. REFERENCES

- 1. Dukes, Craig. 1987. Preliminary Assessment Browning-Ferris Industries Jedburg Landfill, SCD 981 028 574.
- 2. Application for Industrial Waste Landfill Permit; May 30, 1979; filed by George A. Z. Johnson, Jr. for Trident Services, Inc. of Summerville, SC.
- 3. Glowacz, M. E., Geologist. January 10, 1979. Memorandum to Jack Kendall, Solid Waste Division, concerning geologic features of the proposed landfill at Jedburg.
- 4. Federal Aviation Administration. 1979. Letters, Guidance (FAA Order 5200.5), and FAA Regulation of landfills near airports (J.E. Locklair, Jr. Memorial Airport at Jedburg).
- 5. Johnson, Georgia A. Z., Jr. August 6, 1979. Letter with location of nearest well.
- 6. Permit IWP-163, issued by DHEC on August 30, 1979 to Trident Sanitation Services, Inc. for an Industrial Solid Waste Disposal Facility located at Jedburg, South Carolina.
- 7. Grubbs, R. Howard, Attorney. November 7, 1980. Letter notifying DHEC of sale of Trident Services to Browning-Ferris Industries (BFI) of South Atlantic, Inc. in 1980
- 8. Permit TWP-163, Transfer to BFI, February 4, 1981.
- 9. Modification request for IWP-163, September 8, 1981.
- 10. Permit Modification, IWP-163. December 10, 1984. Permit modified to allow disposal of both inert industrial waste and normal domestic waste.
- 11. Permit DWP-129, issued by DHEC in 1987 to BFI to replace permit IWP-169.

Trident North Landfill SCD 980 558 233 Page 7

12. USGS Topographic Maps:
Summerville Quad, 1:24000, 1958 (PR 1979);
Ridgeville Quad, 1:24000, 1979;

Summerville NW Quad, 1:24000, 1958 (PI 1972).

13. Austin, Willis. July 15, 1980. Notification of monitoring well locations and 200 foot buffer zone at Creeks.

~*-

- 14. Ullery, James R. July 23, 1980. Variance granted for disposal of grinding sludge form Hoover Universal.
- 15. Canova, Judy L. December 7, 1988. Preliminary Assessment Hydrogeologic Review for Trident North Landfill (BFI Jedburg).
- 16. South Carolina State Water Assessment. South Carolina Water Resources Commission Report No. 140, September 1983. Ashley-Cooper River sub-basin, Hydrogeology, page 247.
- 17. Record of Communication. March 8, 1989. Telephone conversation between David Nix and Sandra Fleming concerning the scope of the Total Organic Carbon assay.
- 18. South Carolina Water Resources Commission; Surface Water Treatment Plant Intakes.
- 19. South Carolina Nongame and Heritage Trust Section, SC Wildlife and Marine Resources Department. February 9, 1989. Endangered Species Listing by County.
- 20. Groundwater monitoring documentation of high chromium levels, high TOC results, and volatile organic testing.

Site Screening Section Bureau of Solid & Hazardous Waste Management

MEMORANDUM

TO:

Trident North Landfill File

FROM:

Peter N Koufopoulos K

RE:

Latitude/Longitude Calculations for Trident North Landfill Site

Topographic Quad:

Summerville, SC

Date:

1990

Latitude at 0 ticks on scale = 33° 00′ 00″ Site located at tick #31.5

Latitude at 19.2 ticks on scale = 33° 2′ 30.0"

Longitude at 0 ticks on scale = 80° 07′ 30" Site located at tick #34.2 Longitude at 16.2 on scale = 80° 10′ 0.0"

SITE COORDINATES =

33° 4′ 6.1" LATITUDE

80° 12' 46.7" LONGITUDE

R-586-2-1-

FINAL REPORT

SCREENING SITE INSPECTION, PHASE II

TRIDENT NORTH LANDFILL

JEDBURG, DORCHESTER/BERKELEY COUNTIES, SOUTH CAROLINA

EPA ID #: NO. SCD980558233

Prepared Under

TDD No FO

Revision 0

FOR THE

WASTE MANAGEMENT DIVISION U.S. ENVIRONMENTAL PROTECTION AGENCY

MARCH 4, 1991

NUS CORPORATION SUPERFUND DIVISION

Prepared By

Mitch Cohen, P.E. Project Manager

Reviewed By

Bob Donaghue Assistant Regional Project Manager

Approved By

Regional Project Manager

NOTICE

The information in this document has been funded wholly by the United States Environmental Protection Agency (EPA) under Contract Number 68-01-7346 and is considered proprietary to the EPA.

This information is not to be released to third parties without the expressed or written consent of the EPA.

TABLE OF CONTENTS

<u>Section</u>	on No.	<u>Page</u>
EXEC	UTIVE SUMMARY	ES-1
1.0	INTRODUCTION	1
1.1	Objectives	1
1.2	Scope of Work	1
2.0	SITE CHARACTERIZATION	3
2.1	Site Background and History	3
2.2	Site Description	4
3.0	REGIONAL POPULATIONS AND ENVIRONMENTS	7
3.1	Population and Land Use	7
	3.1.1 Demography	7
	3.1.2 Land Use	7
3.2	Surface Water	8
	3.2.1 Climatology	8
	3.2.2 Overland Drainage	8
	3.2.3 Potentially Affected Water Bodies	8
3.3	Groundwater	8
	3.3.1 Hydrogeology	
	3.3.2 Aquifer Use	10
4.0	FIELD INVESTIGATION	11
4.1	Geophysical Screening	11
4.2	Field Analytical Support Project (FASP)	12
	4.2.1 FASP Results	12
4.3	Sample Collection	16 16
	4.3.1 Sample Collection Methodology	
	4.3.2 Split Samples	16 16
	4.3.3 Description of Samples and Sample Locations	17
	4.3.4 Field Measurements	17
4.4	Sample Analysis 4.4.1 Applytical Support and Mathodology	17
	4.4.1 Analytical Support and Methodology 4.4.2 Analytical Data Quality	17
	4.4.3 Presentation of Analytical Results	19
5.0	SUMMARY	26
3.0	JOHNARI	
REFE	RENCES	27
	NDIX A Topographic Map	
–	NDIX B Analytical Data	
	NDIX C Geophysical Methodology	
	NDIX D Field Analytical Support Project Methodology	
	NDIX E Statement of Work for Inorganics Analysis	
APPE	NDIX F Site Inspection Report	

<u>Number</u>		<u>Page</u>
Table 1	Sample Codes, Descriptions, Locations, and Rationale	13
Table 2	Field Measurements	18
Table 3	Organic Analyses - Surface and Subsurface Soil Samples	20
Table 4	Organic Analyses - Sediment Samples	21
Table 5	Organic Analyses - Groundwater Samples	22
Tabl e 6	Inorganic Analyses - Surface and Subsurface Soil Samples	23
Table 7	Inorganic Analyses - Groundwater Samples	24
Table 8	Inorganic Analyses - Sediment Samples	25
	FIGURES	
Figure 1	Site Location Map	5
Figure 2	Site Layout Map	6
Figure 3	Sample Location Map	15

-2

EXECUTIVE SUMMARY

Trident North/Browning-Ferris Industries (BFI) Jedburg Landfill (Trident North Landfill) is located along State Road 16 approximately 1 mile southwest of Interstate 26. The facility, which began landfilling operations in 1979, is currently active today. Most of the waste disposed of in the oldest portion of the landfill operated by Trident Services, Inc. consisted of inert bulk materials such as lumber, concrete, metal bands, cardboard, shingles, tires, empty drums, and asbestos. On some occasions, fuel oil and wastewater treatment sludges were accepted as well as grinding sludge.

Presently, BFI owns and operates the sanitary landfill under Industrial and Domestic Waste Permit DWP-129. The facility receives household waste and construction debris as well as special permitted asbestos and industrial wastes.

The 150-acre facility lies atop a ridge which runs east-west and gently slopes to the north and south. The facility is underlain by about 30 feet of surficial soils, and the depth to groundwater is approximately 20 feet below land surface (bls). The Cooper Formation, an impermeable sandy limestone that acts as a confining unit lies below the surficial soils, is about 150 feet thick in the landfill area. Below the Cooper Formation are several formations, two of which comprise the drinking water aquifer. These are the Santee Limestone and the Black Mingo Formation. These units are about 450 feet thick and lie about 180 feet bls.

The groundwater pathway is of primary concern at the facility. Approximately 546 households use private wells for drinking water within 4 miles of the landfill. Two municipal wells are located between the 2- and 3-mile radii and serve about 16,875 households. Depths of both private and municipal wells extend to at least 400 feet bls, and therefore below the confining Cooper Formation.

The surface water pathway is of concern because both Kelly Branch and Stanley Branch border the facility to the north and south, respectively. The intermittent stream migration path, however, extends for about 2 miles before entering Cypress Swamp.

Soil exposure is of lesser concern because access to the landfill is difficult. The western boundary is fenced with a locked gate, and private farmland surrounds the rest of the facility.

Chromium is the main contaminant of concern at the facility. It was found in all media sampled except for sediment and groundwater from private wells. Shallow, surficial groundwater from

monitoring wells contained chromium; however, groundwater from the deep private wells did not. Groundwater from one private well did have elevated levels of lead as did shallow groundwater from a monitoring well. Based on the analysis of possible migration pathways, the results of the sampling investigation, and the information obtained from the references, FIT 4 recommends that Phase I of a Listing Site Inspection be initiated at Trident North Landfill.

1.0 INTRODUCTION

The NUS Corporation Region 4 Field Investigation Team (FIT) was tasked by the U.S. Environmental Protection Agency (EPA), Waste Management Division to conduct a Phase II Screening Site Inspection (SSI) at the Trident North Landfill facility in Jedburg, Dorchester/Berkeley counties, South Carolina. The investigation was performed under the authority of the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA). The task was performed to satisfy the requirements stated in Technical Directive Document (TDD) number F4-9007-35. The field investigation was conducted during the week of during the week of September 17, 1990.

1.1 OBJECTIVES

The objectives of this inspection were to determine the nature of contaminants present at the site and to determine if a release of these substances has occurred or may occur. Further, this inspection sought to determine the possible pathways by which contamination could migrate from the site and the populations and environments it would potentially affect. Through these objectives, a recommendation was made regarding future activities at the site.

1.2 SCOPE OF WORK

The objectives were achieved through the completion of a number of specific tasks. These activities were to:

- Obtain and review background materials relevant to HRS scoring of site.
- Obtain an aerial photograph and a site layout map of site.
- Obtain information on local water systems.
- Evaluate target populations associated with the groundwater, surface water, air, and onsite exposure pathways.
- Conduct a survey of the two nearest private wells.

- Develop a site sketch.
- Conduct a geophysical screening of the oldest landfill cells to determine whether buried drums or areas of high anomalies were present.
- Collect environmental surface soil, subsurface soil, sediment, monitoring well, and private well samples.

2.0 SITE CHARACTERIZATION

2.1 SITE BACKGROUND AND HISTORY

Trident North/Browning-Ferris Industries (BFI) Jedburg Landfill (Trident North Landfill) is located in Jedburg, South Carolina, along State Road 16 approximately 1 mile southwest of Interstate 26. The facility lies on the Berkeley-Dorchester County line with about 60 percent of the landfill located in Dorchester County (Ref. 1, p. 1). The geographic coordinates for the center of the landfill are 80°12′49″W longitude and 33°04′12″N latitude (Appendix A).

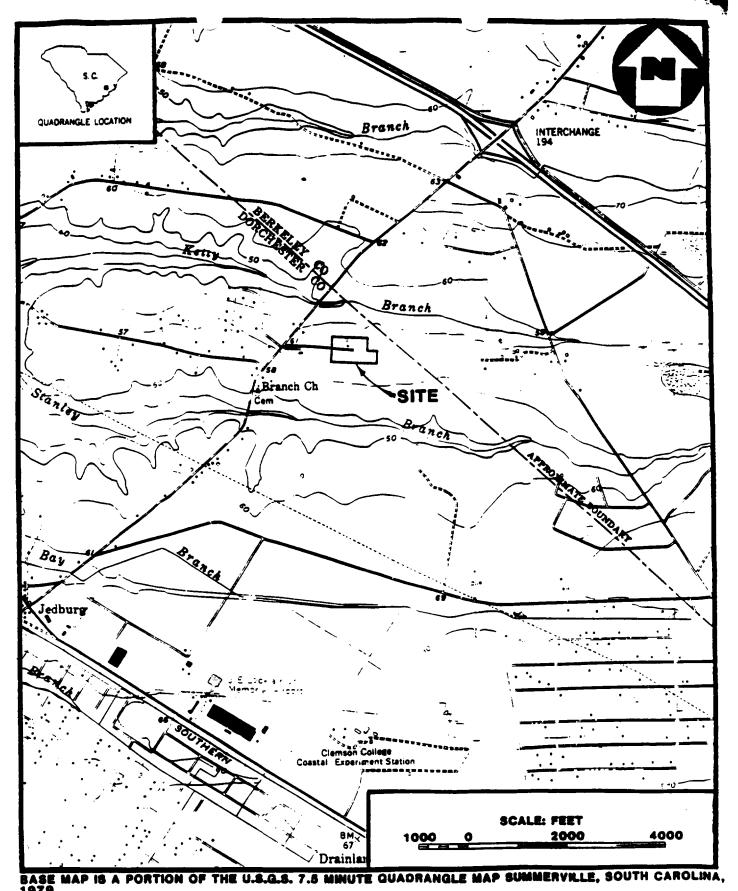
The facility which began landfilling operations in 1979 is still active today. Prior to use as a landfill, the area was cultivated, agricultural land. The land was originally owned by Mr. J.M. Hodge of Summerville, South Carolina, who sold the property to Landent Realty of Charleston, South Carolina, in 1979 (Ref. 1, p. 1).

Landent Realty leased the property to Trident Services, Inc. for use as an industrial waste landfill. Trident Services, Inc. was granted a permit to operate the landfill (IWP-169) by the state of South Carolina on August 30, 1979. In 1980, BFI of South Atlantic, Inc. purchased Trident Services and assumed operation of the landfill. BFI managed the landfill under an Industrial Waste Permit (IWP-163) from 1980, until a permit modification to also accept domestic waste was granted for the Dorchester County portion of the landfill in 1984. In 1987, the state issued a new permit, DWP-129, for industrial and domestic waste disposal at the landfill (Ref. 1, p. 1).

Most of the waste disposed of in the oldest portion of the landfill, operated by Trident Services, Inc., consisted of inert bulk materials such as lumber, concrete, metal bands, cardboard, shingles, tires, empty drums, and asbestos. Department records show that on two occasions the landfill was allowed to accept fuel oil sludges and, on one occasion, burial of wastewater treatment plant sludge was permitted. In 1980, permission was granted by the state for burial of grinding sludge from a ball-bearing manufacturer. The grinding sludge reportedly contained alloys of steel, chromium, molybdenum, and vanadium (Ref. 1, p. 2).

Since 1984, the landfill has been permitted for the disposal of industrial and domestic waste. No hazardous wastes are allowed to be buried in the landfill as per permit requirements. There have been no remedial or removal actions associated with Trident North Landfill (Ref. 1, p. 2).

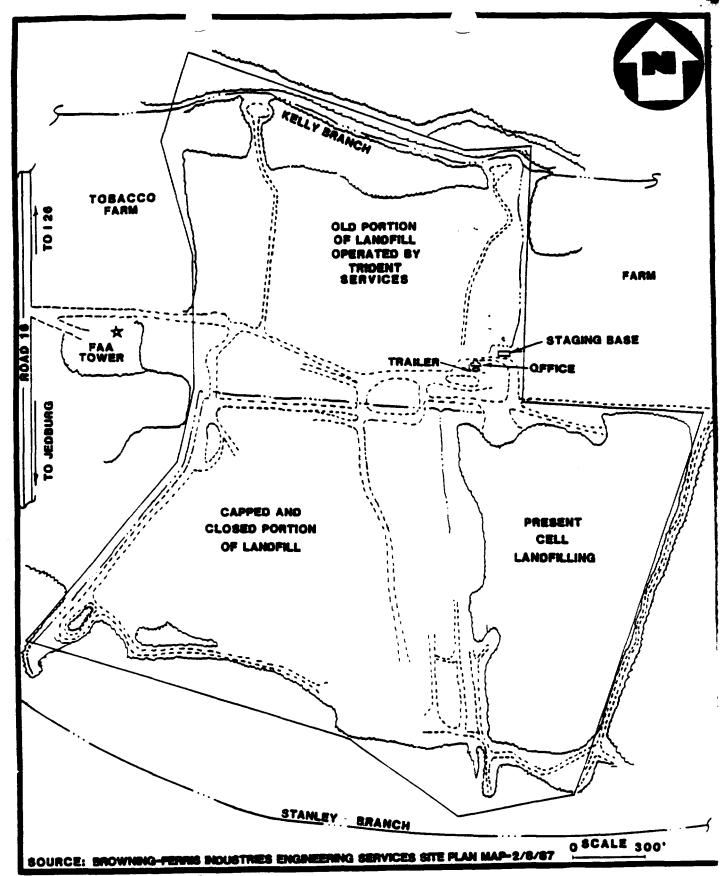
Presently, the landfill is known as the BFI Jedburg Landfill and receives waste from Charleston, Berkeley, and Dorchester counties (Tri-Counties) area. The facility landfills household trash, construction debris, and is permitted to take asbestos and industrial waste. Industrial wastes include mostly papermill byproduct sludges disposed of by Westvaco, a local industrial complex (Ref. 2). The permitted wastes must be identified along with supporting laboratory analysis and approval from both the state and BFI (Ref. 3, p. 4).


Since 1980, the shallow groundwater has been monitored at the landfill. Problems with the groundwater have been detected beginning with elevated levels of chromium in 1981. In 1988, monitoring well samples were tested for volatile organic compounds because of elevated total organic carbon (TOC) results. However, no volatile organics were detected. No testing was done for semivolatile compounds or pesticides at this time. TOC is an indication of the nonvolatile organic carbon content. Prior to this investigation, levels of heavy metals, such as chromium, have not appeared to exceed Federal Drinking Water Standards since the 1981 incident (Ref. 1, p. 1).

2.2 SITE DESCRIPTION

The approximately 150-acre facility lies atop a ridge which runs east-west and gently slopes to the south and north (Ref. 1, p. 2). Only the western boundary appeared to be fenced. The entrance to the landfill had a locked gate as well. Kelly Branch is located to the north, and Stanley Branch is located to the south; both bound the facility (Appendix A).

During the investigation, only the southeastern portion of the landfill was being used to dispose of wastes. At the center of the slightly hilly facility was the scale-house and office trailer. Several dirt hauling roads sectioned the facility into three areas: the northern oldest cell used by Trident Services, a southwestern cell that was capped and closed, and the presently used southeastern cell. The southwestern section was surrounded by drainage ditches, the dry beds of Kelly Branch, and Stanley Branch comprised the northern and southern boundary of the facility. A Federal Aviation Administration radar station and tower are located adjacent and to the west of the landfill. A farm borders the eastern facility boundary (Refer to Figures 1 and 2).


Since groundwater problems were detected in 1981, it seemed most feasible to focus this investigation on the approximately 19-acre and 10-foot-deep cell that was first landfilled in the northern portion of the facility. It was believed that industrial wastes that might have been disposed of in the cell were responsible for the leaching metals detected in the past (Ref. 1, p. 2). Since BFI follows very strict guidelines as to what can or cannot be disposed of, the most recent cells were not considered as much of an impact on groundwater (Ref. 2). Recent monitoring well results appear to show no significant contamination (Ref. 4).

SITE LOCATION MAP TRIDENT NORTH LANDFILL JEDBURG, BERKELEY / DORCHESTER COUNTIES, SOUTH CAROLINA

NUS

FIGURE

SITE LAYOUT MAP TRIDENT NORTH LANDFILL JEDBURG, BERKELEY / DORCHESTER COUNTIES, SOUTH CAROLINA

FIGURE 2

3.0 REGIONAL POPULATIONS AND ENVIRONMENTS

3.1 POPULATION AND LAND USE

3.1.1 Demography

The population within 1 mile of the facility is very small. There are about 27 houses in a small subdivision across County Road 16 from the landfill access road (Ref. 5, p. 4).

According to the Graphic Exposure Modeling System (GEMS) data base, the population within the 4-mile radius from the facility is between 0 to 0.25 mile: 0; 0.25 - 0.5 mile: 0; 0.5 - 1 mile: 0; 1 - 2 miles: 0; 2 - 3 miles: 4,742; 3 - 4 miles: 7,961 (Ref. 6). The topographic maps show at least 35 households within 0.5 mile. The population may be therefore estimated to be about 133 (35 households x 3.8 persons/household). An additional 40 households appear to be located between 0.5 and 1 mile. The population may therefore be estimated to be about 152. The total population within 1 mile may be estimated at 285. Between 1 and 2 miles, approximately 225 households appear to exist. The population in this segment can be approximated at 855. Between the 2 and 4 mile radii, and to the southeast, is the population center of Summerville. Estimates from the GEMS data base may be considered reasonable for this segment of the study area (Ref. 6, Appendix A).

3.1.2 Land Use

Most of the area within 3 miles of the facility is sparsely populated. The generally rural study area is farmed, with many wooded lots lining State Road 16. There are several agricultural plots located around the landfill. A small, approximately 5-acre tobacco farm is northwest of the landfill property along the access road. Another cultivated field is located just east of the staging base and landfill in general (Ref. 5, pp. 2, 3, 4). Cypress Swamp is located to the west-northwest of the facility between the 2- and 4-mile radius (Appendix A).

3.2 SURFACE WATER

3.2.1 Climatology

Trident North Landfill is located in the Atlantic Coastal Plain Physiographic Province and the Atlantic and Gulf Coastal Plain hydrogeologic setting (Ref. 7, plate 28; 8, pp. 270, 271). The climate of the area is characterized by moderate temperatures and humid days (Ref. 9, p. 7). The net annual precipitation is 5 inches, and the maximum 1-year, 24-hour rainfall is 3.5 inches (Ref. 10, pp. 43, 63; 11, p. 93).

3.2.2 Overland Drainage

Drainage ditches along the eastern and western boundaries, as well as the center portion of the landfill, discharge run-off into Kelly Branch and Stanley Branch. Both join together and enter Cypress Swamp, about 2 stream miles west of the facility. About 9 stream miles from the confluence point with Cypress Swamp, the headwaters of the Ashley River begin. The remainder of the 15-mile, surface water pathway continues along the headwaters of the Ashley River (Appendix A).

3.2.3 <u>Potentially Affected Water Bodies</u>

Contaminants migrating off site and flowing to Cypress Swamp may potentially affect recreational fishing. Although most of the property along the swamp is privately owned, fishermen get permission to access the swamp. Small boats such as canoes and johnboats are used, since the water is shallow. The catch includes mudfish, catfish, bream, crappy, bass, and other panfish (Ref. 12). There are two endangered plant species located about 13 stream miles along the surface water migration pathway. They are the <u>Pilea fontina</u> and the <u>Carex oligocarta</u> (Ref. 13).

3.3 GROUNDWATER

3.3.1 <u>Hydrogeology</u>

The landfill is underlain by surficial soils that consist of discontinuous layers of sand and clay with minor amounts of shell and limestone extending to a depth of approximately 30 feet below land surface (bls) (Ref. 9, pp. 12, 13, 41). These surficial soils and overlying recent unconsolidated materials comprise the shallow aquifer, which occurs under water-table conditions. The depth to groundwater in the shallow sands is approximately 20 feet bls (Ref. 1, p. 3). Transmissivities of the shallow aquifer

are generally less than 600 ft²/day (Ref. 9, p. 43). The hydraulic conductivity for sediments similar to these is 1.0×10^{-3} cm/sec (Ref. 14, p. 29).

The Cooper Formation occurs beneath the surficial soils and is an impermeable sandy limestone that acts as a confining zone between the shallow aquifer and the lower Santee Limestone aquifer (Ref. 9, p. 41). The Cooper Formation is approximately 150 feet thick in the landfill area (Ref. 9, p. 12, 13). The hydraulic conductivity for sediments similar to these is 1.0×10^{-7} cm/sec (Ref. 12, p. 29). Formations that underlie the Cooper Formation, in descending order are the Santee Limestone, the Black Mingo Formation, the Peedee Formation, the Black Creek Formation, and the Middendorf Formation (Ref. 9, p. 13). The Santee Limestone is a fossiliferous, slightly glauconitic limestone approximately 110 feet thick (Ref. 9, pp. 13, 18). The formation dips southward at 8 ft/mile and increases in thickness toward the south (Ref. 9, p. 18). The Black Mingo Formation consists of sand and limestone in the upper portion of the unit, and clay and shale in its lower half (Ref. 9, p. 17). The formation is approximately 340 feet thick, with the base of the zone 565 feet bis in this area (Ref. 9, p. 13). The Peedee Formation is represented by calcareous clays and sands that are approximately 350 feet thick (Ref. 9, pp. 13, 17). The Black Creek Formation consist of interbedded sands and clays that are 625 feet thick (Ref. 9, pp. 13, 17). The Middendorf Formation is composed of clays in the lower half with silty sand in the upper. It is encountered at a depth of 1,520 feet bls in the landfill area (Ref. 9, pp. 11, 13, 17).

The primary aquifer used in this area is contained within the Santee Limestone and Black Mingo Formation (Ref. 9, pp. 30-34). A significant amount of hydraulic interconnection occurs between the base of the Santee and upper half of the Black Mingo Formation in this area (Ref. 9, p. 32). Most wells are of open-hole construction and penetrate into the upper sand beds of the Black Mingo Formation (Ref. 9, p. 31). These wells are under artesian conditions due to the overlying confining clays of the Copper Formation and the basal Black Mingo (Ref. 9, p. 30). The water level is approximately 20 feet bls in the landfill area (Ref. 9, p. 33). Water yields of 432,000 gal/day have been reported from wells in this area (Ref. 9, p. 31). The hydraulic conductivity for sediments similar to these is approximately 1.0×10^{-3} cm/sec (Ref. 1, p. 3).

Groundwater does occur in the deeper formations, but due to the quantity of water and expense involved in completing wells, these aquifers are not used in the Summerville area (Ref. 9, pp. 27-30). Rainfall upon the outcropping aquifer-bearing formations (updip and well outside of the study area) serves as the main source of recharge for aquifers present below the landfill (Ref. 9, p. 32). Water quality from the Santee Limestone-Black Mingo formations aquifer is generally good in this area but deteriorates downgradient due to increasing amounts of sodium, fluoride, and chlorides (Ref. 9, pp. 44, 53).

3.3.2 Aquifer Use

The aquifer of concern in the Trident North Landfill area is contained within the Santee Limestone and Black Mingo formations, between 180 and 630 feet bls (Ref. 9, pp. 30-34). Both private wells and municipal wells are at least completed at depths beginning at 400 feet bls (Ref. 15).

Approximately half the area within the 4-mile radius is provided with drinking water by either the city of Summerville or Dorchester County. The city of Summerville serves 15,300 connections with water drawn from five wells. One well is located between the 2- and 3-mile radii and is 1,800 feet deep. Water from all the wells is mixed prior to distribution. Dorchester County serves 1,575 connections, with water drawn from seven wells. One well, 450 feet deep, is located between the 2- and 3-mile radii. Water drawn from all seven wells is mixed prior to distribution (Ref. 5, pp. 6-7).

The portion of the population located within the 4-mile radius not served by a municipal system uses private wells for drinking water. Private wells appear to be approximately 400 feet deep in the area (Ref. 15). Approximately 291 households within 3 miles of the facility use private wells for their water supply. The population served by groundwater obtained from private wells is, therefore, 1,106 (291 households x 3.8 people/household). Between the 3- and 4-mile radii, an additional 255 households use private wells to obtain water. The population served is, accordingly, 969 (255 households x 3.8 people/household). The nearest private well is about 1,000 feet east or west of the facility (Appendix A).

4.0 FIELD INVESTIGATION

4.1 GEOPHYSICAL SCREENING

The purpose of the geophysical screening was to provide the investigation team with information that would aid in the selection of environmental sampling locations. To accomplish this task, the northern portion of the landfill was surveyed with an EM-31D Non-Contacting Terrain Conductivity Meter and a Proton Precession Magnetometer (Figure C-1, Appendix C). Both instruments were calibrated according to standard operating procedures in a plowed field located approximately 400 feet east of the landfill office. After calibration, a background survey was performed. A total of five conductivity and magnetic readings each were taken along a line oriented east-west at 25-foot intervals. The average readings for these stations were used as background values for comparison with onsite data points. Background, magnetic readings varied from 51,634 to 51,640 gammas and averaged 51,637 gammas. Background conductivity readings varied from 16.2 to 16.8 millimhos per meter (mmhos/m) and averaged 16.5 mmhos/m.

Before conducting the survey, a grid was laid over the northern section of the landfill using a Brunton compass and measuring tape. The grid was laid with lines oriented east-west. Stations were spaced 50 feet apart, while grid lines were spaced 25 feet apart. A total of 175 conductivity readings and 184 magnetic readings were obtained for the survey. Measurements recorded during the survey are listed on Field Data Sheets contained in Appendix C along with contour maps for the respective surveys (Figures C-2, C-3).

The majority of the landfill had anomalous conductivity and magnetic readings. Conductivity readings varied from 19 to 252 mmhos/m. Magnetic readings varied from 50,720 to 52,856 gammas. The most obvious anomalous feature observed from contouring the data points is the north-south alignment of conductivity and magnetic high points which generally overlap one another. These features probably show the alignment of trenches used for waste disposal and represent the areas of greatest concentration of metal-bearing wastes.

The results of the survey were inconclusive insofar as determining the edge of the landfill. The intent was to use magnetic data to show the edge of the landfill. Areas of high ground conductivity outside of the landfill boundary then would be assumed to be from groundwater that contained high concentrations of ions associated with waste disposal. Due to time constraints and the thick underbrush located at the northern portion of the landfill property, this objective was not

accomplished during this survey. Any further investigation of the landfill should make use of the results obtained during this survey.

4.2 FIELD ANALYTICAL SUPPORT PROJECT (FASP)

Field Analytical Support Project (FASP) was used to determine the concentration of chromium in the background sample FA-SS-01. Surface soil sample FA-SS-01 was collected in an 8-ounce glass jar and was delivered to the NUS Corporation base lab located in Clarkston, Georgia. Aqueous samples suitable for atomic absorption analysis were prepared using the soil sample microwave digestion procedure described in the USEPA Contract Laboratory Program Statement of Work for Inorganics Analysis (Document Number ILM01.0). This procedure was modified slightly by using 1-gram soil samples instead of 0.5-gram soil samples in the initial sample preparation. In all, six aqueous samples were prepared: a sample, a duplicate sample, a sample spiked with 200 ug Cr, two blank samples, and a National Bureau of Standards (NBS) standard sample prepared using NBS certified Estuarine Sediment 1646. The aqueous samples were analyzed using, as a guide, the Method 7190 (Chromium, Atomic Absorption, Direct Aspiration), USEPA SW-846, November 1986. The 0.6 ppm, 1.0 ppm, 5.0 ppm, and 10.0 ppm experimental standards, used to spike the aqueous samples and to calibrate the atomic absorption instrument, were prepared from a certified standard stock solution with a concentration of 1,000 ppm Cr. A Varian Spectra AA 300/400 atomic absorption instrument was used for the analysis. Acetylene and air were the fuel and oxidant used, respectively. See Appendix D for details of the analytical methods described above.

FASP data are not equivalent to or a replacement for Contract Laboratory Program (CLP) data. FASP analysis was performed without benefit of many of the safeguards used by the CLP labs for maintaining data quality standards required by the EPA. These safeguards are sacrificed in order to provide project managers with fast, inexpensive analysis of environmental samples while the fieldwork is being done. FASP data are not intended for evidentiary use.

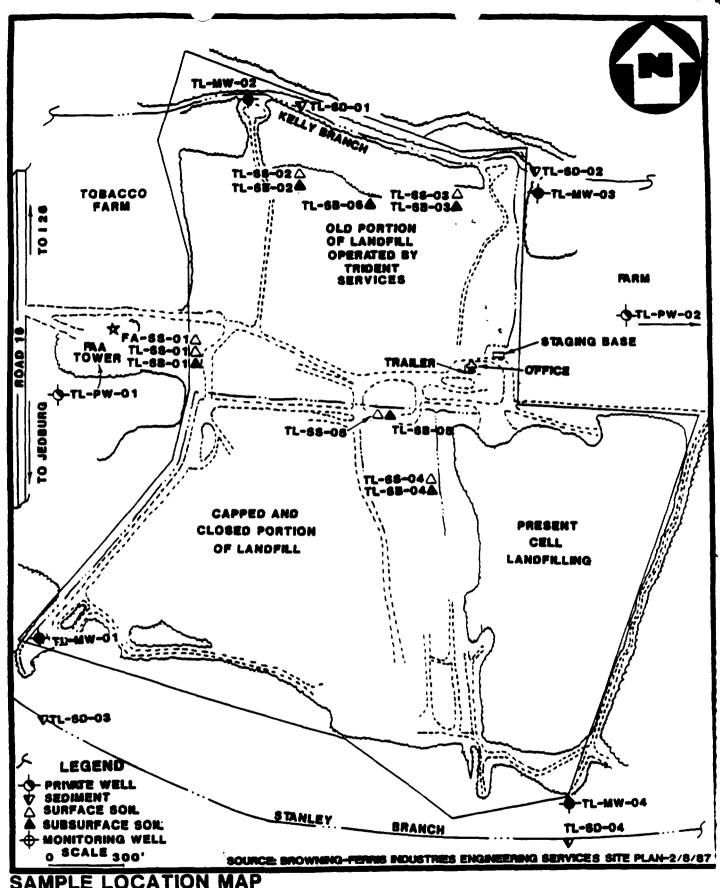
4.2.1 FASP Results

Sample FA-SS-01, which consisted of a moist, grey-colored clay, was determined to have a chromium concentration of 43 ug of chromium per gram of soil. The sample code, description, and rationale may be found in Table 1, and the location is shown on Figure 3 which represents an average of the results for the sample and the duplicate sample. The data for the NBS standard sample indicated a percent recovery of approximately 42 percent; this value was used to calculate the chromium concentration given above. These results are considered only approximately as the absorbance readings of the atomic absorption instrument tended to drift. This behavior was a consequence of

.

SAMPLE CODES, DESCRIPTIONS, LOCATIONS, AND RATIONALE TRIDENT NORTH LANDFILL JEDBURG, DORCHESTER/BERKELEY COUNTIES, SOUTH CAROLINA

Sample Code	Description	Location	Rationale
FA-SS-01	Surface Soil	On site, near the west-central property boundary at 2" below grade	FASP screening sample to determine if chromium levels were elevated precluding its use as a background sample
TL-SS-01	Surface Soil	On site, near the west-central property boundary at 2" below grade	Background sample
TL-SS-02	Surface Soil	On site, at the northwestern edge of the old Trident Landfill cell at 4" below grade	Determine the presence or absence of contamination in surface soil
TL-SS-03	Surface Soil	On site, at the northeastern edge of the old Trident Landfill cell at 3" below grade	Determine the presence or absence of contamination in surface soil
TL-SS-04	Surface Soil	On site, at the central portion of the landfill in a drainage ditch at 4" below grade	Determine the presence or absence of contamination in surface soil
TL-SS-05	Surface Soil	On site, about 300' north and 100' west of the location for TL-SS-04, in another drainage ditch	Determine the presence or absence of contamination in surface soil
TL-SB-01	Subsurface Soil	On site, near the west-central property boundary at 4' below grade	Background sample
TL-SB-02	Subsurface Soil	On site, at the northwestern edge of the old Trident Landfill cell at 5' below grade	Determine the presence or absence of contaminants in subsurface soil
TL-SB-03	Subsurface Soil	On site, at the northeastern edge of the old Trident Landfill cell at 4.5' below grade	Determine the presence or absence of contamination in subsurface soil
TL-SB-04	Subsurface Soil	On site, at the central portion of the landfill in a drainage ditch at 3' below grade	Determine the presence or absence of contamination in subsurface soil
TL-SB-05	Subsurface Soil	On site, about 300' north and 100' west of the location for TL-SB-04, at 6' below grade	Determine the presence or absence of contamination in subsurface soil


TL	•	Trident North Landfill	SD	-	Sediment
TL	•	Trident North Landfill	SD	-	Sedimo

SS - Surface Soil PW - Groundwater, Private Well
SB - Subsurface Soil MW - Groundwater, Monitoring Well

SAMPLE CODES, DESCRIPTIONS, LOCATIONS, AND RATIONALE TRIDENT NORTH LANDFILL JEDBURG, DORCHESTER/BERKELEY COUNTIES, SOUTH CAROLINA

Sample Code	Description	Location	Rationale
TL-SB-06	Subsurface Soil	On site, along the north-central edge of the old Trident Landfill cell, at 6' below grade	Determine the presence or absence of contamination in subsurface soil
TL-SD-01	Sediment	Collected from Kelly Branch at the northwest portion of the facility, 3" below grade	Background sample
TL-SD-02	Sediment	Collected from Kelly Branch at the northeast portion of the facility, 4" below grade	Determine the presence or absence of contaminants in sediment
TL-SD-03	Sediment	Collected from Stanley Branch at the southwest portion of the facility, 4" below grade	Determine the presence or absence of contaminants in sediment
TL-SD-04	Sediment	Collected from Stanley Branch at the southeast portion of the facility, 4" below grade	Determine the presence or absence of contaminants in sediment
TL-PW-01	Private Well	Approximately 350' west of the landfill property at the Federal Aviation Administration (FAA) facility	Background, deep groundwater
TL-PW-02	Private Well	Approximately 500' east of the landfill property at the Scott residence	Determine the presence or absence of contaminants in deep groundwater
TL-MW-01	Monitoring Well	Existing monitoring well located in the southwest portion of the landfill	Determine the presence or absence of contaminants in shallow groundwater
TL-MW-02	Monitoring Well	Existing monitoring well located in the northwest portion of the landfill	Determine the presence or absence of contaminants in shallow groundwater
TL-MW-03	Monitoring Well	Existing monitoring well located in the northeast portion of the landfill	Determine the presence or absence of contaminants in shallow groundwater
TL-MW-04	Monitoring Well	Existing monitoring well located in the southeast portion of the landfill	Control, shallow groundwater

TL	-	Trident North Landfill	SD -	Sediment
SS	-	Surface Soil	PW -	Groundwater, Private Well
SB	-	Subsurface Soil	MW -	Groundwater, Monitoring Well

SAMPLE LOCATION MAP
TRIDENT NORTH LANDFILL
JEDBURG, BERKELEY / DORCHESTER COUNTIES,
SOUTH CAROLINA

FIGURE 8
NUS

the fairly high sensitivity of the absorbance signal to flame stoichromity. The laboratory records, atomic absorption instrument computer printout of the calibration and analysis results, and the calculations used to find the concentration of FA-SS-01 are given in Appendix E.

4.3 SAMPLE COLLECTION

During the week of September 16, 1990, NUS FIT 4 conducted the sampling activities that comprised a portion of the investigation at Trident North Landfill. The following sections describe and discuss the activities and related analytical results.

4.3.1 <u>Sample Collection Methodology</u>

All sample collection, sample preservation, and chain-of-custody procedures used during this investigation were in accordance with the standard operating procedures as specified in Sections 3 and 4 of the Engineering Support Branch Standard Operating Procedures and Quality Assurance Manual; United States Environmental Protection Agency, Region IV, Environmental Services Division, April 1, 1986.

4.3.2 Split Samples

Split samples were offered to and collected by Browning-Ferris Industries Environmental Compliance Manager, Bill Crumley (Ref. 3, p. 7).

4.3.3 Description of Samples and Sample Locations

A total of 21 environmental samples were collected during the investigation. Five surface soil, six subsurface soil, four sediment, four monitoring well, and two private well samples were believed to be adequate in determining the source and character of hazardous wastes that may have been disposed of at the facility. Sample codes and descriptions may be found in Table 1, and locations are shown in Figure 3.

The sampling scheme used during the investigation was different than originally designed in the study plan. Based on geophysical data and information gathered during the onsite reconnaissance, most of the samples were collected around the oldest landfill cell used by Trident Services. Since groundwater contamination was first discovered in 1981, this scenario appeared correct. Only two monitoring well and sediment samples were collected at locations not surrounding the old cell. The two private well samples were collected approximately 1,000 feet east and west of the old cell.

Attempts were made to establish shallow, temporary wells on site, but either groundwater was not available at shallow enough depths, or landfilled debris was encountered. It was decided that existing shallow monitoring wells would be sufficient (Ref. 3, p. 14). Finally, the background surface and subsurface samples were collected near the west-central property boundary of the facility as opposed to the south-central portion.

4.3.4 Field Measurements

Field measurements, such as pH, conductivity, and temperature for the water samples collected during this investigation, may be found on Table 2.

4.4 SAMPLE ANALYSIS

4.4.1 Analytical Support and Methodology

All samples collected were analyzed under the Contract Laboratory Program (CLP) and analyzed for all parameters listed in the Target Compound List (TCL). Organic analysis of soil and water samples was performed by S-Cubed, San Diego, California. Inorganic analysis of soil and water was performed by Skinner and Sherman, Waltham, Massachusetts..

All laboratory analyses and laboratory quality assurance procedures used during this investigation were in accordance with standard procedures and protocols as specified in the <u>Laboratory Operations</u> and <u>Quality Control Manual</u>, United States Environmental Protection Agency, Region IV, Environmental Services Division, October 24, 1990; or as specified by the existing United States Environmental Protection Agency standard procedures and protocols for the contract analytical laboratory program.

4.4.2 Analytical Data Quality

All analytical data were subjected to a quality assurance review as described in the EPA Environmental Services Division laboratory data guidelines. In the tables, some of the concentrations of the organic and inorganic parameters have been flagged with a "J". This indicates that the qualitative analysis was acceptable, but the quantitative value has been estimated. A few other compounds are flagged with an "N", indicating that they were detected based on the presumptive evidence of their presence. This means that the compound was tentatively identified, and its detection cannot be used as positive identification to its presence. The complete analytical data sheets are provided in Appendix B.

TABLE 2

FIELD MEASUREMENTS TRIDENT NORTH LANDFILL JEDBURG, DORCHESTER/BERKELEY COUNTIES, SOUTH CAROLINA

Sample Code	рН	Conductivity	Temp (°F)
TL-PW-01	8.74	732	73
TL-PW-02	8.17	995	68
TL-MW-01	6.95	521	77
TL-MW-02	7.16	648	81
TL-MW-03	6.93	843	79
TL-MW-04	6.77	407	81

4.4.3 Presentation of Analytical Results

The following section discusses the analytical results of environmental samples collected at Trident North Landfill. Organic and inorganic analytical results are presented in Tables 3, 4, 5, 6, 7, 8. Only elevated concentrations of contaminants will be discussed. Elevated concentrations are those found to be either three times background levels or three times the minimum quantitation limit (MQL) of that contaminant in the background sample.

The source area believed to be responsible for hazardous releases was the old landfill cell operated by Trident Services. Several organic and inorganic contaminants were detected in the samples collected. Tetrachloroethene was detected in sample TL-SS-02 at 23 ug/kg or 11 times background. Subsurface soil samples TL-SB-02 and TL-SB-06 contained estimated 1,000 ug/kg of unidentified extractable compounds. Sediment samples TL-SD-01 and TL-SD-03, collected from the north and south property boundaries, were found to have estimated levels of unidentified extractable compounds at 1,000 and 3,000 ug/kg, respectively.

All surface and subsurface soil samples contained levels of chromium ranging from 2.6 to 18 mg/kg. The highest levels were found at the background location (TL-SS-01 at 15 mg/kg and TL-SB-01 at 18 mg/kg).

Groundwater flow is both north and south beneath the landfill (Ref. 1, p. 3). Originally, sample TL-MW-01 was picked as a background sample; however, TL-MW-04 is actually the furthest distance north or south of the old Trident cell. Private well samples collected east and west were too deep and below the confining unit to be used as background.

Based on this and the inability to establish a shallow temporary well either east or west of the facility, sample TL-MW-04 was thereby considered as the control sample. A control sample for a media such as groundwater differs from a background sample, in that it contains low levels of the same contaminants detected in the other samples collected. It is, therefore, used as a comparison for determining elevated levels in the other samples. There were no organic constituents detected in the monitoring wells; however, several inorganic contaminants were found. Chromium was detected at elevated levels in all monitoring well samples except for TL-MW-04 (TL-MW-02, 19 ug/l, 3 times MQL; TL-MW-03 at 22 ug/l, 3.5 times MQL; TL-MW-01 at 74 ug/l, 12 times MQL). Lead and vanadium concentrations were also elevated in sample TL-MW-01, at 74 ug/l, 18 times MQL and 64 ug/l, 12 times MQL, respectively. One contaminant was found in the private well samples collected. Lead was detected in sample TL-PW-02 at 17 ug/l, 4 times MQL.

SUMMARY OF ORGANIC ANALYTICAL RESULTS SURFACE AND SUBSURFACE SOIL SAMPLES TRIDENT NORTH LANDFILL JEDBURG, DORCHESTER/BERKELEY COUNTIES, SOUTH CAROLINA

	Trip Blank	Background	(Triden	Old t Cell	Cen Drainag	itral e Ditch	Background	(Triden	Old t Cell	Cen Drainag	tral e Ditch	OJ- Trida Cell
PARAMETERS (ug/kg)	TL-TB-01S	TL-SS-01	TL-SS-02	TL-SS-03	TL-55-04	TL-SS-05	TL-SB-01	TL-SB-02	TL-SB-03	TL-SB-04	TL-SB-05	TL-SB-06
PURGEABLE COMPOUNDS												
I E TRACHLOROETHENE	\$U	23	23	11	1,1	6	51	-			31	63
TOLUENE	5U					-	4)	-				1
ETHYL BENZENE	SU					-	7U	21	·	·	1	-
EXTRACTABLE COMPOUNDS												,
BENZYL BUTYL PHTHALATE		861	1	·		-	860UJ		·	·	1107	-
UNIDENTIFIED COMPOUND(1)								1000J/1				10007/1

- Material analyzed for but not detected above minimum quantitation limit (MQL).
- J Estimated value.
- U Material was analyzed for but not detected. The number given is the MQL.
- (1) Tentatively identified compound. This compound is not on Target Compound List and is reported only as detected in individual samples; MQL not determined.

SUMMARY OF ORGANIC ANALYTICAL RESULTS SEDIMENT SAMPLES TRIDENT NORTH LANDFILL JEDBURG, DORCHESTER/BERKELEY COUNTY, SOUTH CAROLINA

	Trip Blank	Kelly Bra	nch	Stanley Br	anch
		Background		Background	
PARAMETERS (ug/kg)	TL-TB-O1S	TL-SD-01	TL-SD-02	TL-SD-03	TL-SD-04
PURGEABLE COMPOUNDS					
TETRACHLOROETHENE	SU		•		
TOLUENE	SU	•		-	
ETHYL BENZENE	SU	•	•		
EXTRACTABLE COMPOUNDS					
UNIDENTIFIED COMPOUND(1)		1000/1		30001/2	

- Material analyzed for but not detected above minimum quantitation limit (MQL).
- J Estimated value.
- U Material was analyzed for but not detected. The number given is the MQL.
- (1) Tentatively identified compound. This compound is not on Target Compound List and is reported only as detected in individual samples; MQL not determined.

SUMMARY OF ORGANIC ANALYTICAL RESULTS GROUNDWATER SAMPLES TRIDENT NORTH LANDFILL JEDBURG, DORCHESTER/BERKELEY COUNTY, SOUTH CAROLINA

	Trip Blank	Offs	iite		On	Site	
		West of Facility	East of Facility	Southwest Corner	Northwest Corner	Northeast Corner	Control Sample Southeast Corner
PARAMETERS (ug/l)	TL-TB-01W	TL-PW-01	TL-PW-02	TL-MW-01	TL-MW-02	TL-MW-03	TL-MW-04
PURGEABLE COMPOUNDS							
CARBON DISULFIDE	50	•		5 U	2)		
EXTRACTABLE COMPOUNDS							?
BROMOHEXANE ⁽¹⁾		201N		30JN	301N	301N	,
CAPROLACTAM ⁽¹⁾				20JN		301N	10JN
BUTYLIDENEBIS([DIMETHYLETHYL)METHYLETHYL]PHENOL ⁽¹⁾				40JN	100JN	ML09	20JN
METHYLIDENEBIS((DIMETHYLETHYL)METHYL)PHENOL ⁽¹⁾		20JN			<u> </u>		

- Material analyzed for but not detected above minimum quantitation limit (MQL).
- Estimated value.
- Presumptive evidence of presence of material. N
- U
- Material was analyzed for but not detected. The number given is the MQL.

 Tentatively identified compound. This compound is not on Target Compound List and is reported only as detected in individual samples; (1) MQL not determined.

SUMMARY OF INORGANIC ANALYTICAL RESULTS SURFACE AND SUBSURFACE SOIL SAMPLES TRIDENT NORTH LANDFILL JEDBURG, DORCHESTER/BERKELEY COUNTIES, SOUTH CAROLINA

	Background	Old Trider	nt Cell	Cen Drainage		Background	Old Tride	nt Cell	Central Drainage Ditch		Old Trid Cell	
PARAMETERS (mg/kg)	TL-55-01	TL-SS-02	TL-SS-03	TL-55-04	TL-SS-05	TL-58-01	TL-SB-02	TL-58-03	TL-SB-04	TL-58-05	TL-58-06	
ALUMINUM	6800	7000	7500	8300	6000	14,000	7400	2200	2100	9000	1900	
ARSENIC	2UJ	2.31	2 41	2 71	2 61	3UJ	2 61	-	-	8.61	-	
BARIUM	12	16	23	19	9.3	41	17	11	-	38	14	
CALCIUM	630J	470)	ر780	420J	420J	1400J	-	880)		520J	640J	
CHROMIUM	15	12	15	13	11	18	12	3 3	2.6	7.5	6.5	
COBALT	-	•	-	-		5 4	•			2 9		
IRON	15,000J	16,0001	14,000J	23,0001	12,000J	22,0001	11,0001	53001	1500)	57001	·430J	
LEAD	4.8	11	11	11	6.4	99	9 5	4.7	3 6	12	4.8	
MAGNESIUM	180	250	380	230	180	1900	270	120	130	780	120	
MANGANESE	5.2	49	7.6	44	4.1	39	13	·		21		
POTASSIUM	260	260	270	220	230	1400	210	44	140	780		
SELENIUM	0.57UR	-	·	2)			-					
VANADIUM	30)	241	221	521	25,1	301	231					
ZINC	4 U	•	5.2	-	-	34	•			-		
CYANIDE	10			· ·	1	1 3U					-	

Material analyzed for but not detected above minimum quantitation limit (MQL).

Estimated value.

Material was analyzed for but not detected. The number given is the MQL.

Quality Control indicates that data is unusable. Compound may or may not be present.

TABLE 7

SUMMARY OF INORGANIC ANALYTICAL RESULTS GROUNDWATER SAMPLES TRIDENT NORTH LANDFILL JEDBURG, DORCHESTER/BERKELEY COUNTIES, SOUTH CAROLINA

	Preservative Blank	West of Facility	East of Facility				
				Southwest Corner	On S Northwest Corner	Northeast Corner	Control Sample Southeast Corner
PARAMETERS (ug/l)	TL-P8-01	TL-PW-01	TL-PW-02	TL-MW-01	TL-MW-02	TL-MW-03	TL-MW-04
ALUMINUM		26∪		18,000	3300	4000	1000
CALCIUM		2500	4100	230,000	83,000	140,000	53,000
CHROMIU M		6U	-	74	19	22	6U
COBALT		50		8		·	4 U
IRON	-			16,000	3700	4700	2900
LEAD		40	17	74	8	5	40
MAGNESIUM		1300	2800	12,000	7700	10,000	8000
MANGANESE	-	2U	·	200	83	150	150
POTASSIUM	1	6700	8800	3400	1800	3700	2200
SODIUM		150,000	170,000	25,000	19,000	38,000	35,000
VANADIUM	Ţ	3 U		64	-	-	5 U
CYANIDE		10U				-	10U

Material analyzed for but not detected above minimum quantitation limit (MQL). Material was analyzed for but not detected. The number given is the MQL.

U

TABLE 8

SUMMARY OF INORGANIC ANALYTICAL RESULTS SEDIMENT SAMPLES TRIDENT NORTH LANDFILL JEDBURG, DORCHESTER/BERKELEY COUNTIES, SOUTH CAROLINA

PARAMETERS (mg/kg)	Kelley Branch		Stanley Branch Off Site	
	Background TL-SD-01	TL-SD-02	Background TL-SD-03	TL-SD-04
BARIUM	25	17	30	20
CALCIUM	13001	820J	1200J	1700J
CHROMIUM	21	9.1	15	9.7
COBALT	٤u	•	1.8	
RON	12.0001	21,0 00 J	15,0001	18,000J
LEAD	13	7	9.9	8.3
MAGNESIUM	380	170	390	430
MANGANESE	15	4.7	18	8.3
POTASSIUM	310	93	380	260
VANADIUM	23J	331	29)	231
CYANIDE	1.30			-

- Material analyzed for but not detected above minimum quantitation limit (MQL).
- J Estimated value.
- U Material was analyzed for but not detected. The number given is the MQL.

5.0 SUMMARY

The groundwater pathway is of primary concern. Monitoring well samples collected from the shallow aquifer revealed elevated levels of chromium, lead, and vanadium. A private well sampled east of the facility was found to contain elevated levels of lead. The well is about 440 feet deep, which is below the 150-foot-thick, confining Cooper Formation.

The surface water pathway is of concern; however, the intermittent Stanley and Kelly branches enter Cypress Swamp approximately 2 stream miles from the the facility. This is considered a long migration distance. Only estimated levels of unidentified extractable organics were detected in sediments collected from the tributaries.

Soil exposure is of lesser concern, since the landfill is either fenced or access is difficult. Tetrachloroethene was found at elevated levels in a surface soil sample, and chromium was found in all soil samples collected.

Based on the analysis of possible migration pathways, the results of the sampling investigation, and the information obtained from the references, it is recommended that Phase I of a Listing Site Inspection be initiated at Trident North Landfill.

REFERENCES

- 1. David W. Nix, Bureau of Solid and Hazardous Waste Management, South Carolina Department of Health and Environmental Control, <u>Preliminary Assessment Update Report Trident North Landfill SCD900558233 Berkeley/Dorchester County South Carolina</u>, prepared for EPA (March 10, 1989).
- 2. Allen Walker, Landfill Manager, Browning-Ferris Industries, telephone conversation with Mitch Cohen, NUS Corporation, November 9, 1990. Subject: Specific types of industrial waste disposed of at Trident North Landfill.
- NUS Corporation Field Logbook No. F4-2535 for Trident North Landfill, TDD No. F4-9007-35.
 Documentation of field activities conducted during screening site inspection, September 16, 17, 18, 1990.
- 4. Pat Turner, Manager, Freedom of Information Services, South Carolina Department of Health and Environmental Control, letter and attachment to Mitch Cohen, NUS Corporation, December 21, 1990. Subject: Recent groundwater monitoring results.
- 5. NUS Corporation Field Logbook No. F4-2446 for Trident North Landfill, TDD No. F4-9007-35. Documentation of offsite reconnaissance, July 25, 1990.
- 6. U.S. Environmental Protection Agency, <u>Graphical Exposure Modeling System (GEMS) Data Base</u>, compiled from U.S. Bureau of the Census data (1980).
- 7. Oscar E. Meinger, <u>The Occurrence of Groundwater in the United States</u>, Geological Water-Supply Paper 489 (Washington, D.c.: GPO, 1923).
- 8. Linda Aller, et al., <u>DRASTIC</u>: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings, (Ada, Oklahoma: EPA, 1987).
- 9. A. Drennan Park, <u>The Groundwater Resources of Charleston, Berkeley, and Dorchester Counties, South Carolina</u>, Water Resources Commission Report Number 139 (State of South Carolina, 1985).

- 10. U.S. Department of Commerce, <u>Climatic Atlas of the United States</u> (Washington, D.C.: GPO, June 1968) Reprint: 1983 National Oceanic and Atmospheric Administration.
- 11. U.S. Department of Commerce, <u>Rainfall Frequency Atlas of the United States</u>, Technical Paper No. 40 (Washington, D.C.: GPO 1961).
- 12. Curtis Peebler, South Carolina Wildlife and Marine Resources Department, telephone conversation with Mitch Cohen, NUS Corporation, December 6, 1990. Subject: Fishing and boating in Cypress Swamp.
- 13. Kathy Boyle, South Carolina Wildlife and Marine Resources Department, telephone conversation with Mitch Cohen, NUS Corporation, December 6, 1990. Subject: Endangered plant species along the surface water pathway.
- 14. R. Allan Freeze and John A. Cherry, <u>Groundwater</u> (Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1979).
- 15. Field Technician, Tri-County Well Drilling, telephone conversation with Mitch Cohen, NUS Corporation, December 6, 1990. Subject: Well depths in the Jedburg, South Carolina, area.

	4	7.5
No.		

POTENTIAL HAZARDOUS WASTE SITE

	IFICATION
OI STATE	02 SITE NUMBER
SCD	981028574

1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	ELIMINAHY A TE INFORMATI			ENT	SCD	981028574
II. SITE NAME AND LOCATION						
01 SITE NAME (Legal, common, or descriptive name of site)				R SPECIFIC LOCATIO		
Browning Ferris Industries		One	(1) mile	Southwest	of I-26	on S. d. 16
03 CITY	. 0		05 ZIP CODE	06 COUNTY		CODE DIST
Summerville		SC	29438	Dorchest	er	035 1
09 COORDINATES LATITUDE LONGITU						
3 3°0 4'0 9"1 N _8 1° 12".						
From the intersection of State Ro (Southwest) onto S-16-58 and proce is located on left side between I	eed for ap	proxi	matery r	"I WILLO	JULILINGS	urn left t. Landfill
III. RESPONSIBLE PARTIES						
01 OWNER (# Anowny	ļ°	2 STREE	Ĭ (Business, meling, i	residential)		
Browning Ferris Industries		193	Summery	ville Aven	<u>ue</u>	· · · · · · · · · · · · · · · · · · ·
03 CITY	0	4 STATE	05 ZIP CODE	06 TELEPHON	= -	
Charleston		SC	29405	803 55	4-4994	
07 OPERATOR (if known and different from owner)	0	8 STREE	(Business, mening,	residential		
Same as owner	Į					
09 CITY	1	OSTATE	1 1 ZIP CODE	12 TELEPHON	E NUMBER	
\	1		-	(()		ļ
13 TYPE OF OWNERSHIP (Check one)				1		· .
Cta. PRIVATE B. FEDERAL:	(Apency name)		C. STAT	TE D.COUNT	Y 🛛 E. MU	NICIPAL
F. OTHER:(Soccity)			_ G. UNK	NOWN		
14 OWNER/OPERATOR NOTIFICATION ON FILE (Check all that apply)						
☐ A. RCRA 3001 DATE RECEIVED: / / MONTH DAY YEAR	B. UNCONTROLLE	D WAST	E SITE (CERCLA 10	OJ CI DATE RECEI	VED:/_	15 C. NONE
IV. CHARACTERIZATION OF POTENTIAL HAZARD					MONTH U	AY YEAR
01 ON SITE INSPECTION BY (Check at)	Inel epoty)				 -	
MYES DATE 11 /12/-0 DA.EPA				CKC. STATE		CONTRACTOR
	TOR NAME(S):				(Specify)	
	YEARS OF OPERAT	TION				
Ø A. ACTIVE ☐ B. INACTIVE ☐ C. UNKNOWN	95/	19	79 pr	esent GYEAR	□ UNKNOW	· ·
04 DESCRIPTION OF SUBSTANCES POSSIBLY PRESENT, KNOWN, OR	ALLEGED					
Substances known to be disposed at	this per	mitte	d landfi	ll consist	of lumb	er, concrete
metal band, metal drums, asbestos,	, tires and	d ins	ulation.	No knowr	hazardo	ous substances
are believed to be disposed on sit	e.					
05 DESCRIPTION OF POTENTIAL HAZARD TO ENVIRONMENT AND/OR P	POPULATION					
Shallow groundwater at the site is	not used	for	drinking	water pur	rposes, l	out is likely
to discharge to the local streams	that bord	er th	e site.			
V. PRIORITY ASSESSMENT						
O1 PRIORITY FOR INSPECTION (Check one if high at medium is checked, compil (I) A. HIGH (Inspection required promptly) (Inspection required)	ere Pert 2 · Wasse informa D. C. LOW (Inspect on time av		D. NO			den ferm)
VI. INFORMATION AVAILABLE FROM						
	2 OF (Agency Organizati	-0/1				03 TELEPHONE NUMBER
. 1 . 0			.e ca::A	E Has Was	: t e	(803 734-5200
	SCDHEC - BUI SAGENCY	ceau los ong	NIZATION	& Haz. Was	NE NUMBER	OB DATE
	SCDHEC	BSH			34-5200	08 , 25, 87

EPA FORM 2070-12 (7-81)

9		A
W	الله جميشا	, ,

POTENTIAL HAZARDOUS WASTE SITE

I. IDENTIFICATION 01 STATE 02 SITE NUMBER

WETA			PRELIMINARY PART 2 - WASTI	ASSESSMENT EINFORMATION	SCD 9810	SCD 981029574						
II. WASTE ST	TATES, QUANTITIES, AN	ID CHARACTER	STICS									
O1 PHYSICAL S	STATES (Check as Inst apply) U. E. SLURRY DER, FINES 1: F LIQUID GE 1: G. GAS CUBIC YARDS OZ WASTE QUANTI (Messures or must be must be must be must be compared to the		L SCURRY L POWDER, FINES UF LIQUID L SLUDGE U G. GAS CUBIC YARDS UNKNOWN U B. CORROSIVE UF, INFECTIOUS U C. RADIOACTIVE U G. FLAMMABLE U U D. PERSISTENT U H. IGNITABLE U						LI HIGHLY VOLATILE J. EXPLOSIVE K. REACTIVE L. INCOMPATIBLE M. NOT APPLICABLE			
III. WASTE T	YPE	<u> </u>		<u> </u>		1.20						
CATEGORY	SUBSTANCEN	IAME	01 GROSS AMOUNT	02 UNIT OF MEASURE	03 COMMENTS							
SLU	SLUDGE				Waste type	s disposed a	t this					
OLW	OILY WASTE					onsist of no						
SOL	SOLVENTS					trial waste						
PSD	PESTICIDES					ncrete, meta						
осс	OTHER ORGANIC CI	HEMICALS				1 drums, asb						
ЮС	INORGANIC CHEMIC	CALS	1		and insula							
ACD	ACIDS											
BAS	BASES											
MES	HEAVY METALS											
IV. HAZARD	OUS SUBSTANCES (500 A	ppenaix for most frequen	Hy ciled CAS Numbers)									
01 CATEGORY	02 SUBSTANCE NAME		02 SUBSTANCE NAME		02 SUBSTANCE NAME		03 CAS NUMBER	04 STORAGE/DISPOSAL METHOD		05 CONCENTRATION	06 MEASURE OF CONCENTRATION	
UNK	Asbestos		Asbestos		1332214	Lanfill		unknown	unknown			
	,											
V. FEEDSTO	CKS (See Appendix for CAS Numi	De/ai	<u> </u>	<u> </u>		<u> </u>						
CATEGORY		***************************************	02 CAS NUMBER	CATEGORY	O1 FEEDST	OCK NAME	02 CAS NUMBER					
FDS				FDS								
FDS			 	FDS								
FDS			 	FDS	<u> </u>							
FDS		·		FDS	····							
VI. SOURCE	S OF INFORMATION (CIL	e specific references a d	, state idea, sample analysis				<u> </u>					
	SCDHEC County				s, Berkeley	ፍ Dorcheste	r County					

POTENTIAL HAZARDOUS WASTE SITE PRELIMINARY ASSESSMENT RIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS

I. IDENTIFICATION SCD 981028574

PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS
II. HAZARDOUS CONDITIONS AND INCIDENTS
OI WA GROUNDWATER CONTAMINATION DEPOPULATION POTENTIALLY AFFECTED: 47,500 OA NARRATIVE DESCRIPTION SCDHEC'S Groundwater Protection Division has reviewed this facility's first quarter 1987 groundwater monitoring report. Total/dissolved organic carbon values were elevated. Potential contamination of the shallow aquifer system exist, however, the deeper groundwater is unlikely to be affected due to the impermeability of the Cooper of the Surface water contamination unknown of Normalion of the shallow potentially affected. OI DB SURFACE WATER CONTAMINATION OI POTENTIALLY AFFECTED: Unknown O4 NARRATIVE DESCRIPTION Potential for contamination of the neary creeks of Kelly and Stanley Branch exist since the site is located on a rise and shallow groundwater could be discharging leachate contaminant into the local streams.
O1 C. CONTAMINATION OF AIR O3 POPULATION POTENTIALLY AFFECTED: O4 NARRATIVE DESCRIPTION No contamination of the air has been observed or known to exist at the site by SCDHEC personnel who have conducted numerous site inspections at the facility.
01 🗆 D. FIRE/EXPLOSIVE CONDITIONS 02 🗆 OBSERVED (DATE:) 🗀 POTENTIAL 🗀 ALLEGED
No fire or explosive conditions have ever been known to have occurred at this landfill to date. All refuse is adequately covered daily to prevent any fire potential.
O1 DIRECT CONTACT O3 POPULATION POTENTIALLY AFFECTED. Direct contact with the waste at the site is unlikely because all waste disposed at the landfill is covered daily and surrounded by a chain link fence to limit access to the casual pedestrian.
O1 & F. CONTAMINATION OF SOIL 10 110 02 OBSERVED (DATE:)
O1 DG DRINKING WATER CONTAMINATION O3 POPULATION POTENTIALLY AFFECTED. O4 NARRATIVE DESCRIPTION Drinking water contamination within a three (3) mile radius of the site is unlikely since all residents rely on deep groundwater wells whose depths exceed 300 feet or more. All known wells are screened below the Cooper Marl Formation which is hydrologically impermeable.
O1 D H. WORKER EXPOSURE/INJURY O3 WORKERS POTENTIALLY AFFECTED: O4 NARRATIVE DESCRIPTION No worker exposure injury has been observed or reported at this landfill to date by SCDHEC's Trident District Consultant, Mr. John Ohlandt.
01 UT POPULATION EXPOSURE/INJURY 02 (1) OBSERVED (DATE
No population exposure or injury has occurred at this landfill site since its' original permit date in 1979.

SEPA

POTENTIAL HAZARDOUS WASTE SITE PRELIMINARY ASSESSMENT PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS

I. IDENTIFICATION

01 STATE 02 SITE NUMBER

SCD 981028574

II. HAZARDOUS CONDITIONS AND INCIDENTS (Continued)
01 D J DAMAGE TO FLORA 02 DESERVED (DATE:) POTENTIAL DALLEGED 04 NARRATIVE DESCRIPTION
No damage to flora or any vegetative cover has been reported or observed by SCDHEC
Trident District Consultant, Mr. John Ohlandt.
Tituenc biscirco como de la como
01 K. DAMAGE TO FAUNA 02 OBSERVED (DATE:) PC TENTIAL ALLEGED 04 NARRATIVE DESCRIPTION (Include name) 3) of Species (
No damage to fauna has been determined or observed as a result of landfilling
No damage to fauna has been determined of observed as a room of
activities at this site.
01 🗆 L. CONTAMINATION OF FOOD CHAIN 02 🗆 OBSERVED (DATE:) 🗆 POTENTIAL 🗀 ALLEGED 04 NARRATIVE DESCRIPTION
No contamination of the food chain is known to have occurred at this permitted
Sanitary Landfill.
Jailtaly Hamiller
01 DAM, UNSTABLE CONTAINMENT OF WASTES 02 DIOBSERVED (DATE:) DX POTENTIAL DIALLEGED
(Sodes runotivistanding liquidation of rums) 03 POPULATION POTENTIALLY AFFECTED: 11TIKTIOWIT 04 NARRATIVE DESCRIPTION
Potential unstable containment of wastes exist because the waste types at the site
Potential unstable containment of wastes exist broads and
are buried with no liner containment systems.
01 □ N. DAMAGE TO OFFSITE PROPERTY 02 □ OBSERVED (DATE:) □ POTENTIAL □ ALLEGED 04 NARRATIVE DESCRIPTION
No damage to any offsite property has been determined to exist at this time according
to Mr. John Ohlandt of SCDHEC's Trident District.
01 O. CONTAMINATION OF SEWERS, STORM DRAINS, WWTPs 02 OBSERVED (DATE:) POTENTIAL ALLEGED
No contamination of any wastewater treatment plants, sewers, or storm drains have
No contamination of any wastewater treatment plants, solvers, or contamination or co
been reported or observed to be affected by operation of this soft was or
01 □ P. ILLEGAL/UNAUTHORIZED DUMPING 02 □ OBSERVED (DATE) □ POTENTIAL □ ALLEGED
04 NARRATIVE DESCRIPTION
No-illegal or unauthorized dumping of hazardous waste has occurred at this permitted
No-illegal or unauthorized dumping of mazardous waste has broaden hazardous industrial sanitary landfill. Waste types disposed on site consist of non-hazardous industrial
waste.
05 DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR ALLEGED HAZARDS
Groundwater monitoring analysis for the first quarter of 1987 has indicated slightly
elevated levels of Total Organic Carbon.
III. TOTAL POPULATION POTENTIALLY AFFECTED:
IV. COMMENTS
Continued groundwater monitoring at the landfill should be undertaken to confirm
the presence of volatile organic compounds within the shallow groundwater.
the presence of volacife of game compounds "I man the compounds of the compound of the compounds of the compound
V. SOURCES OF INFORMATION (Cite specific references, e.g., state fries. semple analysis, reports)
SCDHEC Groundwater Protection Division Files - BFI Landfill - Berkeley County
SCHEC Groundwater Protection Division Files Bell Landfill Rankalay County
SCDHEC Solid & Hazardous Waste Files - BFI Landfill - Berkeley County
SCOHEC Trident District Solid Waste Consultant - John D. Ohlandt

(((()) SOLIL WASTE MANAGEMENT SYSTEM PLANT RECORD

Name of Establishment Trident Sanitation Services	s, Inc.
Address 1934 Summerville Avenue, Charleston He	eights. SC 29405
Supervisor Mr. Willis Austin	Phone554-4994
Permit to Operate an Industrial Solid Waste Disposal F	Facility
Date Issued August 30, 1979	Permit NoIWP-163
Approved By Hartsill W. Truesdale, P.E., Director,	, Solid Waste Management Division

South Carolina Bepartment Of Health And Environmental Control

MONON DATE OF THE PROPERTY OF

Solid Waste Management Division Columbia. South Carolina

Permit

Trident Sanitation Services, Inc.	is hereby issued a permit
to operate a.n Industrial Solid Waste Disp	osal Facility
located Jedburg, South Carolina with State laws, rules and regulations of the Environmental Control and the following condi	
1. Facility shall be operated in accorda	nce with engineering plans and report.
2. Wastes shall be limited to lumber, coplastics, asbestos, insulation, tires from U.S. Plywood Corp.	ncrete, metal bands, cardboard, shingles, , metal drums, latex and filler mud
PAGE 1 of 2 Dated this 30th day of August , 1979	Molcolm U. Dantsler, M. D. Malcolm U. Dantzler, Commissioner
Permit No. IWP-163	Hartsill W. Truesdale, P.E., Director
THIS CERTIFICATE IS NON TRANSFERABLE AND IS THE PROPERTY OF SURRENDERED ON DEMAND. KEEP POSTED AT ALL TIME	OF THE SOLID WASTE MANAGEMENT DIVISION AND MUST BE ES IN A CONSPICUOUS PLACE ON THE PREMISES.

Mr. Willis Austin Page Two August 30, 1979

- 3. This permit is subject to review one (1) year from date of issue.
- 4. Daily cover of a minimum of six (6) inches of soil must be provided to ensure adequate fire control.

GROUND WATER SERVICES

STATISTICAL ANALYSIS AND ANNUAL REPORT OF GROUND WATER

FIRST SEMI-ANNUAL/SECOND YEAR CLOSURE (AUGUST 1993)
SECOND SEMI-ANNUAL/SECOND YEAR CLOSURE (FEBRUARY 1994)

JEDBURG LANDFILL CHARLESTON, SOUTH CAROLINA

APRIL, 1994

BROWNING-FERRIS INDUSTRIES

INTEROFFICE CORRESPONDENCE

TO:

TOM ENGELKEN

CECOS - LIVINGSTON

FROM:

MIKE MCGOVERN

GROUND WATER SERVICES

DATE:

APRIL 13, 1994

SUBJECT:

SECOND YEAR CLOSURE ANNUAL STATISTICAL ANALYSIS

OF GROUND WATER JEDBURG LANDFILL SOUTHERN REGION PROJECT NO. 232.900

DISCUSSION

As previously proposed and accepted an intra-well statistical comparison was performed for the Jedburg landfill with six (6) monitoring wells designated W-1A thru W-6 for the second year of closure. The analysis included all data available for each parameter for each of the semi-annual sampling event. The five (5) parameters included in the analysis were chloride, pH, specific conductance, sulfate and total organic carbon (TOC). Each parameter, by well, were described statistically and analyzed for normal distribution tendencies. A tolerance interval was then calculated based on all previous data from each well and compared to the most recent sampling event. A correlation statistic (Kendall-Tau) was calculated and used as a non-parametric trending tendency analysis on those parameters which were not determined to be normally distributed or failed the tolerance test. All statistics used are recommended by either the Statistical Analysis of Ground Water Monitoring Data at RCRA Facilities, EPA, April 1989 and/or Methods for Determining Compliance with Ground Water Quality Regulations at Waste Disposal Facilities, University of Wisconsin, January 1989.

FIRST SEMI-ANNUAL/SECOND YEAR CLOSURE (AUGUST 1993) RESULTS

APPENDIX A

The data for each well is summarized by well by parameter (Section 1). All results for all tested parameters were less than the calculated tolerance intervals (Section 2). There were thirteen (13) instances of non-normally distributed data, pH at wells W-1A, W-3A, Sulfate at W-1A, 2A, 3A 4A and 5A, Conductance at well W-6A and TOC at W-1A, 2A, 3A, 4A and 5A (Section 3). The non-normal data sets were used to calculate non-parametric Kendall-Tau statistics. None of the data indicated significant upward trend (Section 4). The pH value in W-3A did indicate significant downward trend, with a quarterly result of 6.82. Low level organics were detected in well W-6 (Section 4, Appendix C). The organics were 1,1 Dichlorethane and Dichlorofluoromethane at 8.4 and 2.9 ug/l respectively.

SECOND SEMI-ANNUAL/SECOND YEAR OF CLOSURE (FEBRUARY 1994) RESULTS

APPENDIX B

The results for TOC at wells W-3 and W-5A of 64.1 mg/l and 45.2 mg/l are suspect. Neither is indicative of a significant trend or the highest values recorded in the wells histories; but they are an order of magnitude higher than the previous quarters results of 6.54 and 8.66 mg/l, respectively. The pH value in well W-3A is still indicating significant downward trend but this is a result of high pH values in the wells history. The current result is 7.22. Sulfate failed the tolerance test in well W-6. It's concentration was 21.4 mg/l. The number of non-detections (40%) and small sample size indicates that the trend analysis would be more appropriate. The trend analysis indicated a non-significant trend for sulfate in well W-6. Sulfate in W-4A was not run with the trend analysis, although non-normality distributed, because the current result is less than detection limit. Low level organics were detected in well W-6 (Section 4, Appendix C). The organics were 1,1 Dichlorethane and Dichlorofluoromethane at 5.7 and 2.3 ug/l respectively.

CONCLUSIONS

Based on documented methodologies for the statistical analysis of ground water, critical values were established for those parameters meeting necessary pre-conditions (i.e. normality). These critical values were established with data from July 1986 to August 1991. Results from two successive sampling events, August 1993 and February 1994 were compared to these critical values and were found to be within the acceptable limits. Where normality was not achievable or non-detections were > 15% and tolerance intervals exceeded a trend analysis was performed. Persistent low level organics continue to appear in well W-6.

MCM/smv

cc: John Oneacre/File Mark Allendorf

TABLE OF CONTENTS

August 1993

Data Summary		Appendix A, Section 1
Tolerance Limits		Appendix A, Section 2
Shapiro-Wilk Normality		Appendix A, Section 3
Kendall-Tau Trend Analysis		Appendix A, Section 4
	February 1994	
Data Summary		Appendix B, Section 1
Tolerance Limits		Appendix B, Section 2
Shapiro-Wilk Normality		Appendix B, Section 3
Kendall-Tau Trend Analysis		Appendix B, Section 4
Data Spreadsheet		Appendix C, Section 1
Constituent Graphs		Appendix C, Section 2
Ground Water Potentiometric Map		Appendix C, Section 3
VOC Detections		Appendix C, Section 4

DATE SAMPLE	:DI	02/1	 7/94 Y	=====	00/1	0/93 Y	1	======== 04/15/93 Y	====:	02/2	====== 3/93 Y	 1	08/2	8/92 Y	= = = 1	02/24	/92 V	
DATE SAMPLE			//94 Y					04/15/93 ¥	 		3/93 T			3/32 T	 		/92 ¥ 	
**** CONVENTIONALS *****	1 •								•			•						
CHLORIDE MG/L	- 1	13	. 60000		9	.81000	1		i	9	.90000			-	İ	8.	80000	
CYANIDE MG/L	- 1			i			1		1			ļ			1			
DISSOLVED ORGANIC CARBON MG/L	1			1			1	•	1			1			}			
FLUORIDE MG/L	- 1			1		•	1		1			1			1			
NITRATE MG/L				1		•	1		<	0	.05000	1		•	<	٥.	05000	,
NITRITE AND NITRATE MG/L				1			1		1			l			1			
PHENOLS MG/L				1					1			1			l			,
SULFATE MG/L	<		. 00000	 <		.00000	1		1		.39000	1			<		00000	
TEMPERATURE C	ļ	18	. 20000	1	24	. 30000	!	19.40000	ļ		. 40000	1		. 40000	ļ		90000	
TEMPERATURE C	- 1		-	1		•	1	•	1	18	.50000	ļ	22	. 00000	ļ	20.	50000	
**** ELEVATIONS/DEPTHS *****						•	*											
DEPTH TO WATER FT	. !	15	.91000	ļ		•	ļ	•	!		.59000	ļ		.48000	ļ		31000	
ELEV. GROUND WATER SURFACE FT	ļ			ļ	18	. 24000	!	14.45000	ļ	42	. 49000	ł	42	. 78000	Į	41.	77000	
***** INDICATORS *****	_ ! •			! *		•		. •			•				. *			
PH SU	ļ	6	.12000	ļ	6	.85000	!	5.82000	!		.26000	1		. 13000	ļ .		62000	
PH, LAB SU	ļ.		•	!		•	1	•	!	6	. 46000	1	6	. 37000	!	5.	60000	
SPEC. CONDUCTANCE, LAB UMHOS/CM	!		•	ļ .		•	1	•	!		•	!			!			
SPECIFIC CONDUCTANCE UMHOS/CM	- !		.00000	!		.00000	!	148.00000	!		.00000	ļ		.00000	!		00000	
TOC MG/L	1.	3	. 48000	!	17	.80000	! .	•	! .	1	.85000	! .	3	. 00000		в.	00000;	
***** METALS *****	•		•			•	! *	•	! *		•	! *		•	! *			
ANTIMONY MG/L	!		•	į.		•	!	•	!		•	1		•	!	•		
COPPER MG/L			•	1		•	!	•	1		•	!		•	1			
LEAD MG/L	- !		-	!		•	!	•	1		•	1		•	!	•		
MERCURY MG/L	- 1		•	!		•	1	•	ł		•	!		•	!	•		
NICKEL MG/L	- !		•	1		•	!	•	1		•	1		•	!	•		
SELENIUM MG/L	-		•	1		•	ļ	•	1		•	1		•	}	•		
THALLIUM MG/L			•	1		•	!	•	1		•	1		•	<u> </u>			
ZINC MG/L	_		•	۱.		•	! .	•	1.		•	1 -		•	! .	•		,
***** METALS DISSOLVED *****	•		•	! •		•	¦ *	•	-		•	} -		•	1 -	•		(
ARSENIC MG/L	-		•	!		•	!	•	!			}		•	!	•		`
BARIUM MG/L	-		•	1		•	ł	•	1		•	1		•	!	•		
BERYLLIUM MG/L	-		•	1		•	1	•	1		•	1		-	! !	•		
CADMIUM MG/L	-		•	1		•	1	•	1		•	1		•	!	•		
CHROMIUM MG/L	-		•	!		•	1	•	1		•	!		•	! !	•		
LEAD MG/1	!			!		•	!	•	1		•	1		•	! !			
MERCURY MG/L	!		•	1		•	!	•	!		•	1			ļ			
SELENIUM MG/L	1			1		•	!	•	ļ		•	1			1	•		
SILVER MG/L	1			1		•	! .	•	1		•	1						
***** METALS TOTAL ****							*		. *			į •			*			

U = UNDETECTED

A = + - (AFPENDITAL) NOT PERCHTED

I - UNDETERMINATE AND/OF NO REF. SPECTRA AVAILABLE

WELL NO: 3700W1A JEDBURG W-1A PAGE 1.1 DATE SAMPLED | 12/04/91 Y | 11/04/91 Y | 08/20/91 Y | 03/22/91 Y | 02/12/91 Y | 08/23/90 Y ***** CONVENTIONALS ***** CHLORIDE MG/L 12.80000 12.30000 CYANIDE MG/L 0.01000 DISSOLVED ORGANIC CARBON MG/L FLUORIDE MG/L NITRATE MG/L 0.05000 NITRITE AND NITRATE MG/L 0.07000 0.01000 PHENOLS MG/L 3.68000 SULFATE MG/L 5.00000 TEMPERATURE C 22.80000 19.20000 | 25.40000 19.00000 | 20.00000 TEMPERATURE C 19.00000 20.60000 | 23.00000 22.00000 ***** ELEVATIONS/DEPTHS ***** 17.14000 DEPTH TO WATER FT 17.82000 14,23000 15.96000 20.29000 39.26000 ELEV. GROUND WATER SURFACE FT 39.94000 42.85000 41.12000 36.79000 ***** INDICATORS ***** PH SU 6.16000 6.09000 6.52000 6.32000 6.55000 PH. LAB SU 6.47000 6.47000 6.62000 6.70000 SPEC. CONDUCTANCE, LAB UMHOS/CM 187.00000 SPECIFIC CONDUCTANCE UMHOS/CM 191.00000 179.00000 133.00000 188,00000. 4.00000 16.00000 32.00000 18.000007 TOC MG/L ***** METALS ANTIMONY MG/L 0.00500 COPPER MG/L 0.03000 0.00500 LEAD MG/L MERCURY MG/L 0.00050 0.03000 NICKEL MG/L I < SELENIUM MG/L 0.00500 ١ < 0.00500 THALLIUM MG/L ZINC MG/L 0.03000 ***** METALS DISSOLVED ***** ARSENIC MG/L 0.00915 BARIUM MG/L 0.01000 BERYLLIUM MG/L CADMIUM MG/L 0.01000 CHROMIUM MG/L 0.03000 | 0.08160 | LEAD MG/L MERCURY MG/L SELENIUM MG/1 SILVER MO/L -6.030001

***** META_: T()14: ****

care FEE Te(A), compare the compared to an
care FOED BELOW for:

WELL NO: 3700W1A JEDBURG W-1A 02/26/90 Y | 08/23/89 Y | 02/02/89 Y | 08/05/88 Y | 02/12/88 Y | **** CONVENTIONALS ***** CHLORIDE MG/L 13.20000 12.00000 L 17.00000 CYANIDE MG/L DISSOLVED ORGANIC CARBON MG/L FLUORIDE MG/L 0.40000 1.00000 NITRATE MG/L 0.05000 | 0.10000 0.10000 NITRITE AND NITRATE MG/L PHENOLS MG/L SULFATE MG/L 5.00000 Ì 5.00000 l 5.00000 1 TEMPERATURE C 25.00000 | 24.00000 20.00000 21.00000 18.00000 I 22.00000 TEMPERATURE C 17.00000 27.00000 22.00000 | 15.00000 25.00000 I 25.00000 ***** ELEVATIONS/DEPTHS ***** DEPTH TO WATER FT 15.75000 18.26000 I 16.77000 18.53000 16.52000 18.63000 ELEV. GROUND WATER SURFACE FT 41.33000 38.82000 40.31000 38.55000 40.56000 I 38.45000 ***** INDICATORS ***** PH SU 6.31000 6.54000 6.09000 6.16000 6.16000 I 5.75000 6.43000 PH. LAB SU 6.83000 6.33000 6.69000 6.18000 6.58000 SPEC. CONDUCTANCE, LAB UMHOS/CM 225.00000 SPECIFIC CONDUCTANCE UMHOS/CM 145.00000 236.00000 232.00000 186.00000 236.00000 262.000004 13.80000 TOC MG/L 4.00000 9.00000 6.07000 25.50000 1.89000 ***** METALS ANTIMONY MG/L COPPER MG/L LEAD MG/L MERCURY MG/L NICKEL MG/L SELENIUM MG/L THALLIUM MG/L ZINC MG/L ***** METALS DISSOLVED ***** ARSENIC MG/L BARIUM MG/L BERYLLIUM MG/L CADMIUM MG/L CHROMIUM MG/L LEAD MG/L MERCURY MG/. SELENIUM MG/ SILVER MU/L ***** METALS TOTAL *****

Continue (International C

WHERE TENDENCE TO THE SECOND

WELL NO: 3700W1A JEDBURG W-1A PAGE 1.3 DATE SAMPLED 02/11/87 Y I 09/12/86 Y | 07/30/86 Y 01/02/86 Y J ***** CONVENTIONALS ***** CHLORIDE MG/L 13.00000 L 10.70000 7.40000 10.00000 CYANIDE MG/L DISSOLVED ORGANIC CARBON MG/L 37.40000 I 9.20000 43.70000 FLUORIDE MG/L 1.00000 l 1.10000 | < 1.00000 1.00000 l NITRATE MG/L 1.00000 | < 1.00000 | 1.00000 1.00000 NITRITE AND NITRATE MG/L PHENOLS MG/L SULFATE MG/L 6.80000 115.00000 14.40000 50.00000 1 TEMPERATURE C 19.00000 22.00000 22.00000 I 0.00000 TEMPERATURE C 25.00000 25.00000 25,00000 l 0.00000 ***** ELEVATIONS/DEPTHS ***** DEPTH TO WATER FT 16.50000 18.74000 19.13000 17.55000 ELEV. GROUND WATER SURFACE FT 40.58000 38.34000 37.95000 39.53000 ***** INDICATORS ***** PH SU 6.22000 7.49000 7.56000 6.87000 PH. LAB SU 6.50000 6.16000 6.78000 6.17000 SPEC. CONDUCTANCE, LAB UMHOS/CM 300.00000 0.00000 SPECIFIC CONDUCTANCE UMHOS/CM 387.00000 342.00000 321.00000 277.00000 6.46000 11.40000 39.50000 N 0.00000 ***** METALS ANTIMONY MG/L COPPER MG/L LEAD MG/L MERCURY MG/L NICKEL MG/L SELENIUM MG/L THALLIUM MG/L ZINC MG/L ***** METALS DISSOLVED ***** ARSENIC MG/L 0.05000 | < 0.05000 | BARIUM MG/L 0.14000 0.11000 BERYLLIUM MG/L 0.01000 | . CADMIUM MG/L 0.01000 | CHROMIUM MG/L 0.05000 | 4 0.05000 LEAD MG/L 0.05000 1 4 0.05000 | MERCURY MG . L 0.00200 -6.00200 1 SELENIUM MG/L 0.01000 | • 0.01000 1 SILVER MG/L U. 05000 : • 6.05000 L ***** METALS TOTA *****

- GOORTE TEL G. - GOT REPORTED - GATORICATED

2 4 QUARTIFIED BELOW RDG

- GELATER TOAL - CO. LE Teat

I T UNDETERMINATE AND OF THE HET SPECTRA AVAILABLE

WELL NO: 3700W1A	JEDBURG W-1A									PAGE 2	
	DATE SAMPLED	02/17/	94 Y	08/10/93 Y	04/	15/93 Y	02/23/	93 Y (08/28/92 Y	02/24/9	92 Y
ANTIMONY, TOTAL MG/L					1				. 1		
ARSENIC, TOTAL MG/L	1		1		1			1			
BARIUM, TOTAL MG/L	ı				ĺ	. 1		j			
BERYLLIUM, TOTAL MG/L	ı		İ		1			İ	. 1		
CADMIUM, TOTAL MG/L	1		Ì		İ			1	. 1		
CHROMIUM, TOTAL MG/L	i		ĺ	•	j			İ	. 1		
COPPER, TOTAL MG/L	i		į		İ			Ì	. İ		
LEAD, TOTAL MG/L	ı		Ì		Ì			ĺ	. 1		
MERCURY, TOTAL MG/L	İ		i		j			İ	. 1		
NICKEL, TOTAL MG/L	İ		Ì		İ			İ	. i		
SELENIUM, TOTAL MG/L	i		i		İ			İ	. i		
SILVER, TOTAL MG/L .	i		i	•	j			į	. i		
THALLIUM, TOTAL MG/L	i		i		ĵ			i			
ZINC, TOTAL MG/L	i		Ì		i			ĺ	. i		
***** ORGANIC ACIDS	• • • • •		į •		i •			j +	. i	•	
***** ORGANIC BASE *	**** j *		i •		•		•	i •	. 1		
***** ORGANIC OTHER	· ·		į •		j •		•	i •	. i	•	
***** VOLATILE ORGAN	ICS ***** *		i •	•	•		•	į •	. i	•	
***** RADIOACTIVITY	*****		i •		į •	_ i	•	j •	. i	•	

U = UNDETECTED A = +/- (APPROXIMATE) N = NOT REPORTED

A = +/- (AF

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN

WELL NO: 3700W1A JE	DBURG W-1A							PAG	E 2.1
DA	TE SAMPLED!	12/04/91 Y	11/04	1/91 Y	08/20/91 Y	03/22/91	Y 02/12	2/91 Y	08/23/90 Y
ANTIMONY, TOTAL MG/L	<	0.00500						.	
ARSENIC, TOTAL MG/L	ŧ	0.01410	1 .	. 1	•	1 .			
BARIUM, TOTAL MG/L	1		1 .		•		1 .	,	
BERYLLIUM, TOTAL MG/L	<	0.01000	1 .			1 .			
CADMIUM, TOTAL MG/L	 <	0.01000	1 .		•				
CHROMIUM, TOTAL MG/L	<	0.03000	1 .	. <	0.03000		1 .	,	•
COPPER, TOTAL MG/L	 	0.03000	1 .		•		- 1 .	. 1	•
LEAD, TOTAL MG/L	<	0.00500	1 .		•				
MERCURY, TOTAL MG/L	<	0.00050	l .	. 1	•		- 1		
NICKEL, TOTAL MG/L	 <	0.03000	Ι .		-		- .	. 1	
SELENIUM, TOTAL MG/L	<	0.00500	1.		•		- 1 .		
SILVER, TOTAL MG/L	<	0.03000		. 1		1 .	- 1 .	.	•
THALLIUM, TOTAL MG/L	<	0.00500	١ .	. 1		1 .	1 .		
ZINC, TOTAL MG/L	i	0.04880	1 .			1 .		.	•
***** ORGANIC ACIDS ***	••		i • .	. •		1 * .	. • .	. +	
***** ORGANIC BASE ****	• •		! • .	. j •	•	! • .	 • .	, •	
***** ORGANIC OTHER ***	•• •	•	! * .	. •	•	* .	* .	. •	•
***** VOLATILE ORGANICS	*****		! • .	. •			. • .	. *	
***** RADIOACTIVITY ***	••		1 .	. j •	•	! • .	* .	. •	

U = UNDETECTED

N = NOT REPORTED A = +/- (APPROXIMATE)

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN

J = QUANTIFIED BELOW MDL

.

WELL NO: 3700W1A	JEDBURG W-1A						PAGE 2.2
	DATE SAMPLED	02/26/90 Y	08/23/89 Y	02/02/89 Y	08/05/88 Y	02/12/88 Y	08/27/87 Y
ANTIMONY, TOTAL MG/L	1				1 . 1	. 1	
ARSENIC, TOTAL MG/L	ļ			1 .		. 1	•
BARIUM, TOTAL MG/L	ļ	•			. 1	. 1	
BERYLLIUM, TOTAL MG/L		,				. 1	
CADMIUM, TOTAL MG/L	ļ	•	1	1	1 . 1	. 1	
CHROMIUM, TOTAL MG/L	ļ			1	1 . 1	. 1	•
COPPER, TOTAL MG/L	ļ	•		1	1 . 1	.	
LEAD, TOTAL MG/L		•	1	1 .	1 . 1	. 1	•
MERCURY, TOTAL MG/L	1		1 .			. 1	•
NICKEL, TOTAL MG/L	•					. 1	
SELENIUM. TOTAL MG/L	1	•	1			.	
SILVER, TOTAL MG/L	1		1 .	1 .		. 1	
THALLIUM, TOTAL MG/L			1	1		. 1	
ZINC, TOTAL MG/L	I		1	1	1 . 1	. 1	
***** ORGANIC ACIDS	***** *		1 • .	1 • .	i * i	• .	•
***** ORGANIC BASE *	• • • • •	,	• .	1 • .	l • İ	•	•
***** ORGANIC OTHER		,	• .	* .	1• . 1	•	*
***** VOLATILE ORGAN	IC2 ***** *		1 * .	1 • .	l * .	•	•
***** RADIOACTIVITY	*****	,	! • .	1 • .	l • i	*	•

U = UNDETECTED

N = NOT REPORTED A = +/- (APPROXIMATE)

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN J = QUANTIFIED BELOW MDL

W-1A									PAGE	2.3
MPLED	02/11/87 Y		09/12/86 Y		07/30/86 Y		01/02/86 Y	Υ		,
							.			
 	0.05000	<	0.05000	<	0.05000	<	0.05000		1	
j <	0.10000	<	0.10000	<	0.10000		0.10000		1	
ì			. 1	Ì			, 1		İ	
i <	0.01000	<	0.01000 Ì	<	0.01000	<	0.01000 Ì	•	İ	
j <	0.05000 İ	<	0.05000	<	0.05000		0.05000	•	İ	
i		ĺ					i		i	
i <	0.05000	<	0.05000	<	0.05000		0.05000 İ		İ	
i <		<		<		<			i	
i	1,000	i		i					i	
i «	0.0000	<	ດັດເດດ	<	0.01000	<	ninanna i	·	i	•
ءَ ا							· · · · · · · · · · · · · · · · · · ·	•	i	•
i	0.00000	,	1.03000		0.0000	•	1.00000	•	i	•
i	· i		·		•		·	•	i	•
i •	·		·	•	·		·	•	i	•
i •	· i				•		· i	•	i	•
•	· i	•	•		•	•	•	•	i	•
. .	•		•		•		•	•	i	•
	,		•		•			•	:	•
	MPLED 	MPLED 02/11/87 Y	MPLED 02/11/87 Y	MPLED 02/11/87 Y 09/12/86 Y	MPLED 02/11/87 Y 09/12/86 Y	MPLED 02/11/87 Y 09/12/86 Y 07/30/86 Y	MPLED 02/11/87 Y 09/12/86 Y 07/30/86 Y	MPLED 02/11/87 Y 09/12/86 Y 07/30/86 Y 01/02/86 Y <pre></pre>	MPLED 02/11/87 Y 09/12/86 Y 07/30/86 Y 01/02/86 Y Y	MPLED 02/11/87 Y 09/12/86 Y 07/30/86 Y 01/02/86 Y Y

U = UNDETECTED

A = +/- (APPROXIMATE)N = NOT REPORTED

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN
J = QUANTIFIED BELOW MDL

	=====	=====		====	=====			=====		====	====:	======		.======	====:		=====
DATE SAMPLE	D	02/17	7/94 V	 	08/10	0/93 Y	 	04/15	5/93 V	 	02/2	3/93 Y	08/	/28/92 Y	İ	02/2	4/92
***** CONVENTIONALS *****							*			•			+	•	1 +		
LKALINITY MG/L	1			ļ		•	1			!			ļ		1		
ICARBONATE MG/L	ļ			ļ			ļ .						ļ		1		
ARBONATE MG/L	ļ			ļ			1			ļ			1		ļ		
HLORIDE MG/L	1	13	. 50000		18.	70000				1	15	. 50000	1		1	13	. 40000
YANIDE MG/L	- 1			ļ		•	ļ						1		1		
YANIDE MG/L	j			1			ļ			1			1		1		
ISSOLVED ORGANIC CARBON MG/L	ļ			1			ļ			l			ļ		1		-
LUORIDE MG/L	ļ			ļ			ļ			j		•	i		1		
ITRATE MG/L	ļ		•	ļ			Į			<	0	.05000	ļ	•	<	0	.05000
ITRITE AND NITRATE MG/L	-					•	ļ			ļ			!		ļ		
HENOLS MG/L	1			1			1						1				
ULFATE MG/L			. 60000	<		.00000	ļ			<	5	.00000	ļ	•	1 .		. 0000
EMPERATURE C	ļ	15.	. 80000	ļ	19.	50000	ļ	22.	50000	1		. 50000		20.00000	ł		. 4000
EMPERATURE C	ļ			l			1			1	15	. 90000	! :	20.0000		17	. 6000
**** ELEVATIONS/DEPTHS *****							•			*					*		
PTH TO WATER FT	1	3 .	. 59000	1			1		•	}	3	. 45000	1	3.65000	}	3	. 3200
LEV. GROUND WATER SURFACE FT	- 1			l	8.	87000		3.	60000	1	36	. 89000	1 :	6.69000	1	37	.0200
***** INDICATORS *****			•				*			*		-	*	•	1 *		
i Su	ļ	7 .	. 73000	į	6.	85000	1	7.	20000	l	7	. 15000	<u> </u>	7.43000		6	.9400
H, LAB SU	ļ		•	l			ļ			l	7	. 24000	ļ	7.40000	!	7	. 4000
PEC. CONDUCTANCE, LAB UMHOS/CM	1			ļ						l			1	•	İ		
PECIFIC CONDUCTANCE UMHOS/CM	l	313.	. 00000	i	476.	00000	l	439.	00000		382	. 00000	26	55.00000	l	229	. 0000
OC MG/L	-	11.	. 40000	l	6.	36000	ļ				3	. 55000	1	6.00000		5	. 0000
** * * * METALS ** * * * * * *	•						*			*		•	*		•		
LUMINUM MG/L	ł		•	ŀ			Į			l			1	•	1		
NTIMONY MG/L	-		<u>.</u>	i			1					•	1	-	1		
RSENIC MG/L	- 1									1			1		J		
ARIUM MG/L	1			ļ			l			ļ			1		1		
ERYILLIUM MG/L	1			l			l						1		İ		
ADMIUM MG/L	1						1						1				
ALCIUM MG/L	1						1			1			1		1		
HROMJUM MG/L	1			1			1			İ		-	İ		1		
DBALT MG/L	- İ			ĺ			ĺ			ĺ			Ì		İ		
OPPER MG/L	İ			1			!						ļ		1		
RDN MG/L	İ			\			Ì		,				1		1		
EAL MG/L	Ì			Ì			ĺ						İ		1		
AGNESIUM MG/L	ĺ			İ			i						į		i		
ANGANESE MG/L	i			i			j	•					i				-
ERCURY MG/L	i		•				i					•					•

SOME BLOWN MEDICAL SECTION AND SEED OF SECTION AND SEED OF SECTION AND SEED OF SECTION ASSETS OF SECTI

WELL NO: 3700W2A JEDBURG W-2A PAGE 1.1 DATE SAMPLED | 12/04/91 Y | 11/04/91 Y | 08/20/91 Y | 03/22/91 Y | 02/12/91 Y | ***** CONVENTIONALS ***** ALKALINITY MG/L 274.00000 BICARBONATE MG/L 274.00000 CARBONATE MG/L 1.00000 CHLORIDE MG/L 18.20000 l 13.50000 L 16.70000 CYANIDE MG/L 0.01000 0.01000 CYANIDE MG/L 10. DISSOLVED ORGANIC CARBON MG/L FLUORIDE MG/L NITRATE MG/L 0.05000 0.05000 NITRITE AND NITRATE MG/L 0.05000 PHENOLS MG/L 0.01000 10. SULFATE MG/L 5.00000 5.00000 5.00000 TEMPERATURE C 22.50000 19.70000 25.40000 16.00000 19.40000 TEMPERATURE C 20.40000 23.00000 ***** ELEVATIONS/DEPTHS ***** 7.40000 8.25000 DEPTH TO WATER FT 3.98000 3.31000 ELEV. GROUND WATER SURFACE FT 32.94000 32.09000 36.36000 37.03000 ***** INDICATORS ***** PH SU 6.63000 6.61000 7.44000 7.10000 PH, LAB SU 7.38000 7.46000 7.42000 SPEC. CONDUCTANCE, LAB UMHOS/CM SPECIFIC CONDUCTANCE UMHOS/CM 445.00000 438,00000 350.00000 324.00000 TOC MG/L 2.00000 14.00000 8.00000 ***** METALS ALUMINUM MG/L 3.30000 ANTIMONY MG/L U 24. ARSENIC MG/L U 2. BARIUM MG/L 0.00000 J BERYILLIUM MG/L 1. CADMIUM MG/L 3. CALCIUM MG/L 83.00000 CHROMIUM MG/L 0.01900 COBALT MG/L 5. (OPPER MG/L IRON MG/L 3.70660 LEAD MG/L 0.00890 MAGNESIUM MG/L 7.70000 MANGANESE MG/L

5.5400 to 15.46 The FEFORTER TALL STATE (ALPHONISTE CONDETERMINATE AND OF THE PER SPECIFIC AVAILABLE.

MERCURY MG/L

Tenant Service Tenant CONSTRUCTOR DELOW MAN

C. 08300

DATE SAMPLED	08/23	3/90 Y	1 (02/26/	'90 Y	1	08/23/89 Y	j	02/02/89 Y	1	08/05/	88 Y	1 0	2/12	/88
***** CONVENTIONALS *****			 *												- -
ALKALINITY MG/L		•	•	•		, ,	•		•	*	-	!	,	•	
BICARBONATE MG/L		•	i	•		ŀ	•	1	•	- 1	•	- 1		•	
CARBONATE MG/L	·	•	ì	•		ł	•	1	•	- 1	•	1		•	
CHLORIDE MG/L	·	•	i	12.6	0000	ł	•	[11.00000	- 1	•			16	0000
CYANIDE MG/L		•	i	12.0	,0000	i	•	1	11.00000	i	•	i		10.	0000
CYANIDE MG/L	i	•		•		i	•	ł	•	ł	•			•	
DISSOLVED ORGANIC CARBON MG/L	i '	•	i	•		i	•	1	•	i		1		•	
LUORIDE MG/L	i	•	i	•		i	•	i	0.40000	i	•	1	<	١.	0000
NITRATE MG/L			<	ຄໍດ	5000	i	•	<	0.10000		•	ľ	,		1000
VITRITE AND NITRATE MG/L	i '	•	i `	0.0	3000	i	•	i `	0.10000	i	•	i	ļ	0.	1000
PHENOLS MG/L	i '	•	i	•		i	•	i	•	- 1	•			•	
SULFATE MG/L	i	•	i <	5 0	0000	i	•	ا د	5.00000	i	•			ج.	0000
TEMPERATURE C	j 20	. 00000			0000	i	24.00000	i	18.00000		20.0	0000	,		0000
TEMPERATURE C		00000	i		0000	i	27.00000	i	22.00000			0000			0000
***** ELEVATIONS/DEPTHS *****	i •		i •			•					20.0	1	*	-5.	0000
SEPTH TO WATER FT	i 7.	76000	i	3.4	4000	i	6.54000	i	4.08000	i	9.2	4000		3.	7800
LEV. GROUND WATER SURFACE FT	•	58000	ĺ		0000	i	34.30000	i	36.26000			0000			5600
***** INDICATORS *****			٠					i •					*		•••
PH SU	j 7.	18000	i	7.0	0000	i	7.11000	i	6.79000	i	7.3	9000		7.	6700
PH. LAB SU	j 7.	06000	İ	7.4	4000	i	7.28000	i	7.11000	•		8000	ĺ	-	2100
SPEC. CONDUCTANCE, LAB UMHOS/CM	j.		ĺ			İ		i		i		i			_
SPECIFIC CONDUCTANCE UMHOS/CM	j 382.	00000	į	280.0	0000	İ	296.00000	i	323.00000	i	405.0	0000 i		301.	0000
FOC MG/L	j 9.	00000		6.0	0000	İ	10.00000	İ	7.70000	i	5.0	3000		11.	3000
***** METALS ****	j • .					•				•	-	į			
ALUMINUM MG/L	! .	.				j		ì		j		i			
ANTIMONY MG/L	i .	. 1				İ		İ		i		i			
ARSENIC MG/L	İ.					ĺ		i		i		j			
BARIUM MG/L	į .	. j	Ì			İ		j		i		i			
ERYILLIUM MG/L	ί.					ĺ		i	•	İ		i			
ADMIUM MG/L						İ		İ		İ		į			
ALCIUM MG/L	j .				j	İ		İ	_	i		į			
HROMIUM MG/L	l .	į			j	İ		İ		İ		i			
OBALT MG/L					j	İ		İ		İ		i		·	
OPPER MG/L		İ	1		i	Ì		İ		j		į			
RON MG/L] .					İ		İ		i		i			
EAD MG/L					j	İ		İ		į		į			
MAGNESIUM MG/L	1 .	Ì	1		j			i		i		i			
MANGANESE MG/L	1	į			į	ļ			•	i		į			
MERCHEY Most	ì	i			i	ı				į		j			

Get 21f File TriAte Cont. 13 JEP Broom W.

DATE SAMPLE	0.1	08/27/87 Y	1	02/11/07 4	09/12/86	V 1	07/20	/06 V I		i	.,
DAIE SAMPLE		UB/2//B/ Y		02/11/87 Y	U9/12/86	· • • •	U//3U/	/86 Y	Y		
**** CONVENTIONALS ****				•		1	• .			1	
LKALINITY MG/L	Ì		1		,	- 1		İ		1	•
ICARBONATE MG/L	Ì		İ		i .	i		ĺ		İ	
ARBONATE MG/L	İ		i		i :	i		i		i	
HLORIDE MG/L	i		i	11.00000	10.700	oo i	14.5	50000 İ		i	
YANIDE MG/L	i		i			i			· · · · · · · · · · · · · · · · · · ·	i	-
VANIDE MG/L	i	•	i		i	i		i	•	i	•
ISSOLVED ORGANIC CARBON MG/L	i		i	20.80000	26.600	i oo		i		i	•
UORIDE MG/L	i		<	1.00000	< 1.000		1.0	ooooo i	•	i	•
TRATE MG/L	i	•	<	1.00000	< 1.000			00000	•	i	•
ITRITE AND NITRATE MG/L	1	•			1.000		•		•		•
ENOLS MG/L	i	•	i	•		i	•	i	•	i	•
JLFATE MG/L	i	•	ì	4.30000	18.000	nn i	۵.	50000	•	i	•
EMPERATURE C	i	20.00000	i	16.00000	19.000			00000	•	i	•
MPERATURE C	i	25.00000	i	25.00000	25.000			00000	•	i	•
**** ELEVATIONS/DEPTHS *****		25.0000	i *	25.00000	*				•	i	•
PTH TO WATER FT	i	7.77000	i	3.50000	7.400	inn l	Α.	43000	•	1	•
EV. GROUND WATER SURFACE FT	i	32.57000	1	36.84000	32.940			1000	•	i	•
**** INDICATORS *****		32.37000		30.04000) • 52.540		•	1	•	i	•
Su	i	6.80000	1	7.07000	7.430	inn l	7 7	38000	•	i	•
I, LAB SU	ł	7.49000	i	7.39000	8.400			11000	•	1	•
EC. CONDUCTANCE, LAB UMHOS/CM	ł	290.00000	1	7.35000	0.400		475.0		•	}	•
ECIFIC CONDUCTANCE UMHOS/CM	- 1	243.00000	ł	335.00000	419.000	00 1	417.0		•	i	•
C MG/L	-	7.02000	-	23.80000	14.400			00000	•		•
***** METALS *****		7.02000		23.80000	14.400	ן טטו	62.1	1 0000	•	1	•
	"	•	1 -	•	•	- 1	•		•	-	•
UMINUM MG/L	-	•	1	•	•]	•	!	•	1	•
TIMONY MG/L	- !	•	1	•	•	1	•	!	•	}	•
SENIC MG/L	- !	•	!	•	•	- !	•	!	•	!	•
RIUM MG/L	!	•	!	•		!	•	!	•	!	•
RYILLIUM MG/L	ļ.		ļ	•		!	•	ļ	•	!	•
DMIUM MG/L	ļ.	•	!	•	•	Į.	•	ļ ļ	•	1	
_CIUM_MG/L	ļ	•	ļ				•	ļ	•	ţ	
ROMIUM MG/L	ļ		ļ					ļ	•	ļ	
BALT MG/L	!		!					ļ		ļ	
PPER MG/L		•	ļ			- 1		ļ	-	ļ	
ON MG/L	1		}								
AD MG/L	1	•	1			- 1		1			
GNESIUM MG/L	1					İ		1		1	
NGANESE MG/L	1		!	. i		- 1	•				
ERCURY MG/L	1		1			1		i			

U = SHILLER TELL
U = NET + DETELL
U = NET + DETELL
UNDETERMINATE AND OR NET REF. SHECTRA AVAILABLE

SPEATER THAN 1870 TOWN OF SOME BELOW DELIVER.

WELL NO: 3700W2A JEDBURG W-2A PAGE 2

	02/17/94 V	08/10/93 Y	04/15/93 Y	02/23/93 v	08/28/92 Y	02/24/92
NICKEL MG/L	l .					
OTASSIUM MG/L	1 .	i .	Ì.	i .		
ELENIUM MG/L	i .	i .		· .		1
ILVER MG/L	i :	i .				i .
ODIUM MG/L	i .	i	i			i .
THALLIUM MG/L	i .	i	i .	i .	<u>.</u>	Ι.
FIN MG/L	i .	i .	i .	i .		
ANADIUM MG/L	i i	į	i	i .		1 .
ZINC MG/L	i :	i i	i .	i .		
	i •		*			•
ANTIMONY MG/L	i i	i i	i :	i :	i :	i :
ARSENIC MG/L	i :	i :	i :	i :		<u> </u>
BARIUM MG/L	i i	i .	į		i	i i
BERYLLIUM MG/L	i :	i .	i .		i	
ADMIUM MG/L	i	i .	<u>.</u>			
CHROMIUM MG/L	i	i .	•	·	i ·	
COPPER MG/L	i ·	i ·	•		-	i ·
EAD MG/L	i '	i	•	i ·	i i	i
MERCURY MG/L	i ·	i .	•	·	·	·
VICKEL MG/L	i '	i ·	•	i ·	-	İ
SELENIUM MG/L	i '	i	•	•	· ·	•
SILVER MG/L	i ·	·	•	·	·	
THALLIUM MG/L	i '	·	•	•	·	
ZINC MG/L	i ·	· '	•	·	,	· I
***** METALS TOTAL *****		•	•	•		•
LUMINUM. TOTAL MG/L	i	·	•	·	,	•
ANTIMONY, TOTAL MG/L		·	•	•	,	•
ARSENIC, TOTAL MG/L	· ·	·	•	·	·	I
BARIUM, TOTAL MG/L	·	·	•	•	•	İ
BERYLLIUM, TOTAL MG/L	·	•	•	•	-	i ·
CADMIUM, TOTAL MG/L	•	•	•	•	•	<u>.</u>
CALCIUM. TOTAL MG/L	-	•	•	•		•
CHROMIUM, TOTAL MG/L		•	•	•	·	· •
COBALT, TOTAL MG/L		•	•	•		
COPPER, TOTAL MG/L		•	•		•	•
RON, TOTAL MG/L	1	•	-		·	
EAD, TOTAL MG/L		. •	•	•	,	
MAGNESIUM, TOTAL MG/L		•	•	·	•	
MANGANESE, TOTAL MG/L		·	•	•	·	
			•	•	•	
MERCURY, TOTAL MG/L				-	·	
NICKEL, TOTAL MG/L	1					
POTASSIUM, TOTAL MG/L	‡ 1					
SELENIUM, TOTAL MG/L	1					
JIEVER, TOTA, MG/L					;	*
	v 4 (04) e (1) . Ti		,	MERTER ING.	e i butt	
To a REFORTED		ONIMATE:				
UNDETERMINATE ARRIVOR NO REC. (PR		- O - 1016 () 1	. (BELOW	Production of the Control of the Con	
TO STATE OF THE PROPERTY OF THE STATE OF THE	LIES STAILSHIP					

DATE SAMPLED | 12/04/91 V | 11/04/91 V | 08/20/91 V | 03/22/91 V | 02/12/91 V | NICKEL MG/L POTASSIUM MG/L 1.80.00 SELENIUM MG/L 3. SILVER MG/L 5. SODIUM MG/L 19.00000 THALLIUM MG/L Lu 3. TIN MG/L 0.00000 l N VANADIUM MG/L 1 U 20. ZINC MG/L Įυ 50. ***** METALS DISSOLVED ***** ANTIMONY MG/L 0.00500 ARSENIC MG/L 0.00500 BARIUM MG/L BERYLLIUM MG/L 0.01000 CADMIUM MG/L 0.01000 CHROMIUM MG/L 0.03000 0.03450 | COPPER MG/L 0.03000 LEAD MG/L 0.00500 i MERCURY MG/L 0.00050 NICKEL MG/L | < 0.03000 SELENIUM MG/L | < 0.00500 SILVER MG/L ۱ < 0.03000 THALLIUM MG/L 0.00500 l ZINC MG/L 0.03000 1 ***** METALS TOTAL ***** ALUMINUM, TOTAL MG/L 2.30000 ANTIMONY, TOTAL MG/L 0.00500 | ARSENIC, TOTAL MG/L 0.00500 l 0.00500 BARIUM, TOTAL MG/L 0.07000 BERYLLIUM, TOTAL MG/L D.01000 1 0.01000 CADMIUM, TOTAL MG/L < 0.01000 l 0.01000 CALCIUM, TOTAL MG/L 76.00000 CHROMIUM, TOTAL MG/L 0.03000 | 0.03000 0.03000 COBALT, TOTAL MG/L | < 0.03000 COPPER, TOTAL MG/L 0.03000 | 0.03000 IRON, TOTAL MG/L 2.70000 LEAD. TOTAL MG/L a onson I 0.00500 MAGNESIUM, TOTAL MG/L . . 6.70000 MANGANESE, TOTAL MG/L 0.07000 MERCURY, TOTAL MG/L 0.00056 0.00056 MICKEL, TOTAL MG/. 0.03000 L C. G.33334 POTASSIUM, TOTAL MG/. 1,50000 SELENIUM, TOTAL MG. 0.00566 C. ODEAC

 $6.030m_{\odot}^{-1}$

SILVER, TOTA MOVE

WELL NO: 3700W2A JEDBURG W-2A

- Britier India - Obertifier Below M. .

PAGE 2.1

4 63006

t=tot PEROLES t=t

⁼ UNDETERMINATE AND OF THE SPECTRA AVAILABLE

WELL NO: 3700W2A JEDBURG W-2A PAGE 2.2

DATE SAMPLED	08/23/90 Y	02/26/90 Y	08/23/89 Y	02/02/89 Y	08/05/88 Y	02/12/88
NICKEL MG/L		.				
POTASSIUM MG/L		1 .	i . i	i i	. i	
SELENIUM MG/L		i	i i	i	i	•
SILVER MG/L		i i	i i	·	i	•
ODIUM MG/L	•	·	i ' i	·	· .	•
HALLIUM MG/L	•	•		•	·	•
IN MG/L	•	,	}	• }	. }	•
ANADIUM MG/L	•	•	·	. !	• 1	•
:	•			•	·	•
INC MG/L	•			•	•	
***** METALS DISSOLVED *****	•	! • ·	* ·	•	•	
NTIMONY MG/L	•			· !		•
RSENIC MG/L	•	! . !	· !	· !	. !	•
ARIUM MG/L	•		. !	· !	· !	
BERYLLIUM MG/L	•		. !	- <u>!</u>	. !	•
ADMIUM MG/L	•			. !	. !	•
HROMIUM MG/L	,			. !	. !	
OPPER MG/L				. [•
EAD MG/L		!			.	•
ERCURY MG/L	•	! .		. 1	. 1	
IICKEL MG/L j			. 1	. 1	. 1	
ELENIUM MG/L	•	1		. 1	. 1	
ILVER MG/L		i	i . i	. i	. i	
HALLIUM MG/L		i . i	i . i	. i	. i	
INC MG/L		j :	i i	į	i i	
***** METALS TOTAL *****	•	i •	•	• i	* .	•
LUMINUM, TOTAL MG/L	•	i i	Ť	i	i	*
NTIMONY, TOTAL MG/L	•	i i		· i	· i	•
RSENIC, TOTAL MG/L	•	i :	•	·	· i	•
ARIUM, TOTAL MG/L	•		•	!		•
ERYLLIUM, TOTAL MG/L	•		•		-	•
ADMIUM, TOTAL MG/L	•	•	. !	•	·	•
	•		•	• !	·	•
ALCIUM, TOTAL MG/L	•			· !	,	•
HROMIUM, TOTAL MG/L	•		-	· [. [•
OBALT, TOTAL MG/L	•	·		· !		•
OPPER, TOTAL MG/L	•			· !	. !	
RON. TOTAL MG/L	•			. !	. !	
EAD, TOTAL MG/L				. !	.	•
AGNESIUM, TOTAL MG/L				. 1	. 1	
ANGANESE, TOTAL MG/L	•	. 1	. 1	. 1	. 1	
ERCURY, TOTAL MG/L		l i		. 1	. į	
ICKEL, TOTAL MG/L				. 1	į.	
OTASSIUM, TOTAL MG/1		i		i		•
ELENIUM, TOTAL MG/L						
ILVER, TOTA, MG/L						

I I OURSETERMINATE AND ON HER SERVITAL AVAILABLE

GREATER INANCES OF THE TOTAL CONTROL

	E SAMPLED!	08/27/87 Y	 1	02/11/87 Y	 	09/12/86 Y	1	7/30/86 Y		 1 v	
			!) 	US/12/00 Y				, Y 	
NICKEL MG/L	1	•	ì		1		1	. 1		i	
POTASSIUM MG/L	Ì		ĺ		İ		Ì			ĺ	
SELENIUM MG/L	ĺ		ĺ		Ì		ĺ	. İ		Ì	_
SILVER MG/L	Ì		İ		İ		İ	. i		İ	
SODIUM MG/L	j		İ		i		İ	. i	_	i	
MALLIUM MG/L	i		i				i	. i		i	
IN MG/L	j	•	i		ĺ		ĺ			i	
ANADIUM MG/L	i		i		İ		i			i	į.
INC MG/L	i		i		i		i	i	·	i	•
***** METALS DISSOLVED *		· ·	i •	Ţ	*	•		· i	•	j	•
ANTIMONY MG/L	i	•	i	•	i	•	i	· i	•	i	•
RSENIC MG/L	i	•	i <	0.05000	<	0.05000	i	· i	•	i	•
BARIUM MG/L	i	•	1	0.14000	,	0.18000	i	·	•	i	•
BERYLLIUM MG/L	i	•	i	0.14000		0.10000	i		•	i	•
CADMIUM MG/L	i	•	i	0.01000	<	0.01000	i		•	i	•
CHROMIUM MG/L	i	•	<	0.05000	<u> </u>	0.05000	i	·	•		•
COPPER MG/L	i	•	¦ `	0.03000	`	0.03000	l	•	•	i	•
EAD MG/L		•	<	0.05000	<	0.05000	i	·	•	i	•
MERCURY MG/L		•	\ \ \	0.00200	\ ~	0.00200	i		•	i	•
IICKEL MG/L	i	•	¦ `	0.00200	`	0.00200	1	·	•	- 1	•
SELENIUM MG/L	i	•	٠ .	0.01000	<	0.01000			•	i	•
SILVER MG/L	i	•	\ \ \	0.05000	~	0.05000	ì	·	•	i	•
HALLIUM MG/L	i	•	i `	0.03000	`	0.03000	i	-	•	i	•
INC MG/L	i	•	i	•		•	i	•	•	i	•
***** METALS TOTAL *****	· •	•		•	*	•		•	•	i	•
LUMINUM, TOTAL MG/L		•	i	•		•	i	•	•	i	•
ANTIMONY, TOTAL MG/L	i	•	i	•		•	¦	•	•	i	•
ARSENIC, TOTAL MG/L	i	•	i <	0.05000	<	0.05000	<	0.05000	•	i	•
BARIUM, TOTAL MG/L	i	•	<	0.10000	~	0.10000	`	0.13000	•	I	•
BERYLLIUM, TOTAL MG/L	i	•	`	0.10000	_	0.10000	i	0.13000	•		•
CADMIUM, TOTAL MG/L	i	•	<	0.01000	<	0.01000	<	0.01000	•	- 1	•
ALCIUM, TOTAL MG/L		•	`	0.01000	`	0.01000	¦ `	0.01000	•	i	•
CHROMIUM, TOTAL MG/L	}	•	 	0.05000	<	0.05000	1	0.15000	•	i	•
OBALT, TOTAL MG/L	i	•	¦ `	0.03000	`	0.03000	1	i	•	i	•
COPPER, TOTAL MG/L	,	•	ł	•		•	1	•	•	ŀ	•
RON, TOTAL MG/L	<u> </u>	•	;	•		•	! !	•	•	- 1	•
EAD, TOTAL MG/L		•	 	0.05000	<	0.05000	·	0.05000	•	-	•
MAGNESIUM, TOTAL MG/L		•	! `		`	0.03000	! `	i	•	I	•
MANGANESE, TOTAL MG/L			!	•		•	!	.]		!	•
	!	•	! ! .	0.00200		1 (1000)	!	0.00201		!	•
MERCURY, TOTAL MG/L	1	•	! '	0.00206	•	C.00200	1 .	0.00206			
CONTRACTOR AND A CONTRACTOR AND ALL MICHAEL AND ALL MICHAEL AND ALL MICHAEL MI	1	•	i I		i	•	t I	- I		1	
POTASSIUM, TOTAL MG/L	ļ	*	1				}			!	
FLENTOM. TOTAL MG/L	ļ	4		6.01006	•	0.61000		0.01000		!	
JILVER, TOTAL MG/L	Į.		! -	0.05000	<	0.05000		0.0500C I		1	

SOURCH TEATHER THAN SELECTED OF FATER THAN SELECTION OF THAN SELEC

TO THE OFFICE AND THE PARTY OF THE CAPACITY AND THE PARTY

WELL NO: 3700W2A JEDBURG W-	24	=======================================	=======				========				PAGE	3
DATE SAMPLE	D	02/17/94 Y	J 08/	10/93 Y	04/1	5/93 Y	02/23	/93 Y	08/28	/92 Y	02/2	4/92 Y
SODIUM, TOTAL MG/L			1		 							
THALLIUM, TOTAL MG/L	İ		ĺ		İ	. 1		į		İ		-
VANADIUM, TOTAL MG/L	1	•	1		1			!				
ZINC, TOTAL MG/L	1		1		1	.		1		1		
***** ORGANIC ACIDS *****	•	•	*			. 1	• .		* .	- 1	*	
***** ORGANIC BASE *****	*		1 *		1 •			I	• .	1	•	
***** ORGANIC OTHER *****	•		•		•	. 1	• .	1	•	1	•	
***** VOLATILE ORGANICS *****	•					. 1	• .		* .	1	•	•
***** RADIOACTIVITY ****						. 1		1			•	_

U = UNDETECTED A = +/- (APPROXIMATE) N = NOT REPORTED

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN

WELL NO: 3700W2A JEDBURG W-2	A 	=======================================								PA	GE 3.1
DATE SAMPLE	DI	12/04/91 Y	11/0	4/91 Y	08/20/9	1 Y	03/22/91 \	, I	02/12/91	Y	09/18/90 Y
SODIUM. TOTAL MG/L	1		 	. 1				1	· 	1	17.00000
THALLIUM, TOTAL MG/L	j <	0.00500	ĺ	. j		İ	•	ĺ		j	0.00500
VANADIUM, TOTAL MG/L	1		1	.		- 1	•	j		<	0.03000
ZINC, TOTAL MG/L	 <	0.03000	1	. 1		- 1				1	0.04000
***** ORGANIC ACIDS *****		•	•	. !	• .	+		•			
***** ORGANIC BASE ****	*		•	. ! '	• .	•		*			
***** ORGANIC OTHER *****			(•	. 1 '		*					
***** VOLATILE ORGANICS *****		•		. '	• .	•				*	
***** RADIOACTIVITY *****	•			. 1 :	.	•		*			

U = UNDETECTED

N = NOT REPORTED

A = +/- (APPROXIMATE)

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN

WELL NO: 3700W2A J	EDBURG W-2A							PAGE	3,2
D	ATE SAMPLED	08/23/	90 Y	02/26/90 Y	08/23/89	v 02/02/89	V 08/05	/88 Y 0:	2/12/88 Y
SODIUM, TOTAL MG/L						· · · · · · · · · · · · · · · · · · ·	- 		
THALLIUM, TOTAL MG/L	j		į	•		i .	j.	ľ	-
VANADIUM, TOTAL MG/L	į		į			· i .	j .	İ	
ZINC, TOTAL MG/L	ļ		1			1 .		!	
***** ORGANIC ACIDS **	***	•	*	•	! • .	! *	. .		
***** ORGANIC BASE ***	••	• .	•		i • .	· 1 • .	i • .	•	
***** ORGANIC OTHER **	•••		j •		· .	! • .	*	j •	
***** VOLATILE ORGANIC	S ****		j •			• .	• .	į *	
***** RADIOACTIVITY **	***		j *		j •	_ i •	i •	į •	

U = UNDETECTED A = +/- (APPROXIMATE) N = NOT REPORTED

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN

WELL NO: 3700W2A JEDB	URG W-2A							PAGE 3.3
DATE	SAMPLED	08/27/87 V	02/11/87	Y 09/	12/86 Y	07/30/86 Y	Y	Y
SODIUM, TOTAL MG/L		.			. 1			
THALLIUM, TOTAL MG/L	j	. 1	•	İ	. j		j .	1
VANADIUM, TOTAL MG/L	ļ	. !		ļ	-	•		
ZINC, TOTAL MG/L	ļ	. 1		ı	.	-		
***** ORGANIC ACIDS *****	•	. [. 1	•		1 .
***** ORGANIC BASE *****	*	. 1		•	. 1	•		ί.
***** ORGANIC OTHER *****	•	. 1	• .	*	. 1	•		
***** VOLATILE ORGANICS *	• • • •		• .	•	. 1	•		
***** RADIOACTIVITY *****	į •		•	•	. 1	• .		ĺ.

U = UNDETECTED

N = NOT REPORTED A = \pm /- (APPROXIMATE)

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN

WELL NO: 3700W3A JEDBURG W-3A PAGE 1 DATE SAMPLED | 02/17/94 Y | 08/10/93 Y | 04/15/93 Y | 02/23/93 Y | 08/28/92 Y | 02/24/92 Y ***** CONVENTIONALS ***** ALKALINITY MG/L BICARBONATE MG/L CARBONATE MG/L 34.70000 | CHLORIDE MG/L 33.70000 1 30.80000 l 28.60000 CYANIDE MG/L CYANIDE MG/L DISSOLVED ORGANIC CARBON MG/L FLUORIDE MG/L NITRATE MG/L 0.05000 0.05000 NITRITE AND NITRATE MG/L PHENOLS MG/L SULFATE MG/L 16.30000 l 15.90000 | 16.60000 16,70000 TEMPERATURE C 16.00000 18.90000 16.70000 22.40000 19.90000 22.00000 TEMPERATURE C 15.70000 21.00000 18.90000 ***** ELEVATIONS/DEPTHS ***** 5.66000 5.07000 DEPTH TO WATER FT 5.70000 5.12000 ELEV. GROUND WATER SURFACE FT 9.04000 5.53000 37.09000 37.67000 37.72000 ***** INDICATORS ***** PH SU 7.22000 6.88000 7.06000 6.97000 6.82000 7.14000 PH. LAB SU 7.18000 7.03000 7.13000 SPEC. CONDUCTANCE, LAB UMHOS/CM 686.00000 636,00000 560.00000 549,00000 602,00000 SPECIFIC CONDUCTANCE UMHOS/CM 389.00000 TOC MG/L 64.10000 6.54000 2.91000 3.00000 2.00000 ***** METALS ALUMINUM MG/L ANTIMONY MG/L ARSENIC MG/L BARIUM MG/L BERYILLIUM MG/L CADMIUM MG/L CALCIUM MG/L CHROMIUM MG/L COBALT MG/L COPPER MG/L IRON MG/L LEAD MG/L MAGNESTUN MG/L MANGANESE MG/L MERCURY MG 1

CONTRACTOR THAT IS A FIRST TYPE.

TO SHOUTH THE BELOW MICE

I = UNDETERMINATE AND OF NO REF. SPECTRA AVAILABLE.

WELL NO: 3700W3A JEDBURG W-3A DATE SAMPLED | 12/04/91 Y | 11/04/91 Y | 08/20/91 Y | 03/22/91 Y | 02/12/91 Y | ***** CONVENTIONALS ***** ALKALINITY MG/L 368.00000 BICARBONATE MG/L 368.00000 CARBONATE MG/L 1.00000 CHLORIDE MG/L 35.00000 L 29.60000 İ 38.00000 CYANIDE MG/L 0.01000 0.01000 CYANIDE MG/L 10. DISSOLVED ORGANIC CARBON MG/L FLUORIDE MG/L 0.07100 NITRATE MG/L 0.08000 0.05000 NITRITE AND NITRATE MG/L PHENOLS MG/L 0.01000 10. SULFATE MG/L 16.80000 18.00000 16.40000 TEMPERATURE C 22.20000 20.10000 1 24.50000 16.00000 TEMPERATURE C 19.90000 20.50000 I 23.00000 **** ELEVATIONS/DEPTHS ***** DEPTH TO WATER FT 7.51000 5.55000 5.52000 5.39000 ELEV. GROUND WATER SURFACE FT 35.28000 37.24000 37.27000 37.40000 ***** INDICATORS ***** PH SU 6.88000 6.82000 7.48000 7.07000 PH. LAB SU 7.28000 7.13000 7.18000 SPEC. CONDUCTANCE, LAB UMHOS/CM 611.00000 543.00000 SPECIFIC CONDUCTANCE UMHOS/CM 605.00000 599.00000 TOC MG/L 2.00000 5.00000 1.00000 ***** METALS 4.00000 ALUMINUM MG/L ANTIMONY MG/L U 24. ARSENIC MG/L 2. U BARIUM MG/L 120. U BERYILLIUM MG/L 1. CADMIUM MG/L З. CALCIUM MG/L 140.00000 CHROMIUM MG/L 0.02200 COBALT MG/L L+ 5. COPPER MG/L IRON MG/L 4.70GU.: LEAD MG/_ 6.00500 MAGNESTUN MG 1 10 00000 MANGANESE MG. L G 15-facts MERCUPY Mov.

The condition of the co

CONTRIES THAN

			=====:						====		=====	=====	;= = ==
DATÉ SAMPLE	DI	08/23/90 Y		02/26/90 Y	 	08/23/89 Y	(02/0 2/89 Y	 	08/05/88 Y	 	02/12	:/88 \
***** CONVENTIONALS *****		•	•		•		•						
ALKALINITY MG/L	1	•	J	•	1				j		1		
BICARBONATE MG/L	1	•			1						1		
CARBONATE MG/L	- 1	•	}		-		l	•	1		{		
CHLORIDE MG/L	-	·	İ	34.50000	1	•		27,00000	l		1	33.	0000
CYANIDE MG/L	- 1	•	1	•	1	•	1		1		1		
CYANIDE MG/L	ĺ		İ		1		İ		İ		İ		
ISSOLVED ORGANIC CARBON MG/L	ĺ		İ		Ì	•	İ		İ		İ		
LUORIDE MG/L	Ì		İ		j		Ì	0.70000	İ	_	į <	1.	0000
ITRATE MG/L	ĺ		j <	0.05000	i		j <	0.10000	İ		j <		1000
ITRITE AND NITRATE MG/L	İ	•	İ		ì		i		İ		i		
PHENOLS MG/L	i		İ	_	i		i		i		i		
SULFATE MG/L	İ		İ	17.50000	i	_	İ	14.00000	ĺ		İ	5.	0000
TEMPERATURE C	i	20.00000	i	25.00000	i	24.00000	i	18.00000	i	19.00000	i		0000
EMPERATURE C	i	22.00000	i	15.00000	i	30.00000	i	22.00000	i	15.00000	i		0000
***** ELEVATIONS/DEPTHS *****	i •		i •				i •		*		•		
EPTH TO WATER FT	i	7.98000	i	5.88000	i	7.34000	j	6.52000	İ	10.12000	i	6.	2800
LEV. GROUND WATER SURFACE FT	i	34.81000	i	36.91000	i	35.45000	i	36.27000	,	32.67000	i		5100
***** INDICATORS *****	i •	04.01000		00.07000	i .	00.40000		00	*	02.07000		50.	3.00
PH SU	i	7.25000	i	6.970 00	i	7.08000	i	7.04000		7.35000	i	В.	3100
PH, LAB SU	i	7.08000	ì	7.19000	i	7.22000	i	7.05000		7.26000	i		3100
SPEC. CONDUCTANCE. LAB UMHOS/CM	i	7.00000	i	7.13000	i	7.22000	i	7.03000		7.2000	1	٠.	3100
SPECIFIC CONDUCTANCE UMHOS/CM	i	60 0.00000	i	441.00000	i	600.00000	i	486.00000		568 .00000	i	446	0000
OC MG/L		10.00000	i	4.00000	i	8.00000	i	3.00000		5.72000	1		6000
***** METALS *****		10.00000		٥٠٥٥٥٠ -	i .	0.00000		3.00000		3.72000		٠٠.	0000
LUMINUM MG/L	1	•	}	•		•		•		•	¦ '	•	
NTIMONY MG/L	1	•	! !	•	1	•	ľ	•		•	! !	•	
RSENIC MG/L	-	•	Ì	•	1	•	ľ	•		•	!	•	
ARIUM MG/L	-	•	ŀ	•	1	•] 	•		•	!	•	
ERYILLIUM MG/L	- 1	•	!	•	1		! !	•		•	}	•	
ADMIUM MG/L	-	•	j i	•	1	•	!	•		•	!	•	
ALCIUM MG/L	-	•	ļ	•	1		!	•		•	!	•	
	!	•	!	•	1	•	!	•		•	!		
HROMIUM MG/L	!	•	[•	ļ		ļ	•		•			
OBALT MG/L	!	•	!		1						!		
OPPER MG/L	I	•	Į.		!	,	ļ			•	ļ.		
RON MG/L	1		1	٠	!	•	!				!		
EAD MG/L	1		1		ļ		!				ļ		
MAGNESTUM MGT.	+		İ	•	1	. 1					i		
AANGANESE MG L	i		ļ	•	i								
FROMEN MG :			1				!				1		

C = Out It | Et | Control

*** CONVENTIONALS ***** ALINITY MG/L ARBONATE MG/L		1 -				
ARBONATE MG/L		, •	1 .		.	
	1 .	1 .	1	1 . 1	. 1	-
-	1 .	1	i	l . i	. i	_
BONATE MG/L	i	i .	i			
ORIDE MG/L	i	27.00000	21.60000	18.90000	· i	•
NIDE MG/L	•	1 27.00000	1 21.00000	10.30000	• [•
NIDE MG/L	· ·		•	• •		•
		00.0000	20000	·	•	•
SOLVED ORGANIC CARBON MG/L	•	< 23.00000	28.70000		- !	•
ORIDE MG/L		< 1.00000	1.00000	< 1.00000	· !	•
RATE MG/L		1.00000	1.00000	< 1.00000	. !	
RITE AND NITRATE MG/L	ļ .	· .			. 1	
NOLS MG/L	ļ .				. 1	
FATE MG/L	1 .	2.00000	9.00000	8.90000	. 1	
PERATURE C	20.00000	15.00000	18.00000	l 18.00000 l	. İ	
PERATURE C	j 25.00000	25.00000	25.00000	25.00000 İ	. i	
*** ELEVATIONS/DEPTHS *****	•	•	•	*	i i	•
TH TO WATER FT	9.90000	5.87000	7,20000	8.00000	·	•
V. GROUND WATER SURFACE FT	32.89000	36.92000	35.59000	34.79000	•	•
*** INDICATORS *****	32.69000	30.92000	35.59000	34.79000	•	•
		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1	7.44000		•
SU	6.71000	7.24000	7.51000	7.41000		•
LAB SU	7.21000	7.28000	6.93000	7.15000		
C. CONDUCTANCE, LAB UMHOS/CM	600.00000		! . !	645.00000	. !	
CIFIC CONDUCTANCE UMHOS/CM	508.00000	485.00000	540.00000	534.00000		
MG/L	6.00000	48.30000	24.60000	157.00000		
**** METALS *****		1 * .	1 *	•		
MINUM MG/L	i .	i .	i . i	. i		_
IMONY MG/L	i	i	j i	i	i	•
ENIC MG/L	i		i i	i i	i i	•
IUM MG/L		1	·	•	•	•
YILLIUM MG/L			·	·	•	•
				•	•	•
MIUM MG/L		· ·			. !	•
CIUM MG/L		!	!		. !	•
OMIUM MG/L		· ·	!	-	. !	
ALT MG/L			ļ . l	. 1	. !	
PER MG/L		1 .			. 1	
N MG/L	1 .	1 .	1	. !	. 1	
D MG/;	1	1 .	. !	· i		
NESIUM MG L		1	į i	i	i	
GANESE MG/L		i ·	i i	·	1	•
CURY MG/.		1	i '	•	•	•
CAZIN F. MISZ. S	ī		• • •	. 1	'	•

I = NOT REPORTED

^{1 =} UNDETERMINATE AND/OF NO PEF. SPECTRA AVAILABLE

⁼ GREATER THAN

WELL NO: 3700W3A JEDBURG W-3A PAGE 2 DATE SAMPLED 02/17/94 V 08/10/93 V 04/15/93 V 02/23/93 V 08/28/92 V 02/24/92 V NICKEL MG/L POTASSIUM MG/L SELENIUM MG/L SILVER MG/L SODIUM MG/L THALLIUM MG/L TIN MG/L VANADIUM MG/L ZINC MG/L ***** METALS DISSOLVED ***** ANTIMONY MG/L ARSENIC MG/L BARIUM MG/L BERYLLIUM MG/L CADMIUM MG/L CHROMIUM MG/L COPPER MG/L LEAD MG/L MERCURY MG/L NICKEL MG/L SELENIUM MG/L SILVER MG/L THALLIUM MG/L ZINC MG/L ***** METALS TOTAL ***** ALUMINUM, TOTAL MG/L ANTIMONY, TOTAL MG/L ARSENIC, TOTAL MG/L BARIUM, TOTAL MG/L BERYLLIUM, TOTAL MG/L CADMIUM, TOTAL MG/L CALCIUM, TOTAL MG/L CHROMIUM, TOTAL MG/L COBALT, TOTAL MG/L COPPER, TOTAL MG/L IRON, TOTAL MG/L LEAD. TOTAL MG/L MAGNESIUM, TOTAL MG/L MANGANESE, TOTAL MG/L MERCURY, TOTAL MG/L MICKEL TOTAL MG/L POTASSIUM, TOTA, MG/, SELENIUM, TOTAL MG/. SILVER, TOTAL MG/:

CONTRACTOR THAT I SEE A SECULAR TEACH

U = UNDERTECTED

1 = TANDERTECTED

4 = + CAPPROXIMATE.

I = UNDETERMINATE AND/OR NO PER SPECTRA AVAILABLE

DATE	SAMPLED	12/04/91 Y	11/04/9	11 7 0	8/20/91 Y	03/22/91 Y	02/12/91 Y	1	09/18/90 Y
ICKEL MG/L	1		1			1		1 U	8.
OTASSIUM MG/L	i	•		i	•	i	i '	i	3.70000
ELENIUM MG/L		•	· ·	i	•	· ·	·	ĺυ	3.70000
ILVER MG/L		•	· ·	i	•		•	Ιŭ	5.
ODIUM MG/L	i	•		i	•	· ·	·	1	38.00000
HALLIUM MG/L		•		i	•	1	·	U	3.
IN MG/L	i	•	;	i	•	•	•	İN	0.00000
ANADIUM MG/L	i	•	;	ì	•	•	i ·	ĺΰ	30.
INC MG/L	i	•		i	•	i .	i ·	ĺŭ	50.
***** METALS DISSOLVED **	•••	•		i •	•	•			30.
NTIMONY MG/L	<	0.00500			•			i	•
RSENIC MG/L		0.00500		i	•		,	i	•
ARIUM MG/L	i `			i	•		i ·	i	•
ERYLLIUM MG/L	i <	0.01000		i	•	•	i	ì	•
ADMIUM MG/L	`	0.01000	· ·	i	•	•	·	ì	•
HROMIUM MG/L	`	0.03000		<	0.03000		i '	i	•
OPPER MG/L	1 2	0.03000	· ·	`	0.03000	·	•	i	•
EAD MG/L	<	0.00500	; ·	i	•		·	i	•
ERCURY MG/L	`	0.00050		l	•	•	•	i	•
ICKEL MG/L	1 4	0.03000		i	•	•	1	i	•
ELENIUM MG/L	` `	0.00500	·	í	•		·	i	•
ILVER MG/L		0.03000		i	•		•	i	•
HALLIUM MG/L	\ \ \ \ \ \ \ \	0.00500		i	•		·	i	•
INC MG/L		0.03000	; ·	i	•	i i	· ·	i	. ,
***** METALS TOTAL *****		0.0000	· ·	i •	•	' · '			•
LUMINUM, TOTAL MG/L	i	•	· ·	i	•	i .	· ·	i	0.54000
NTIMONY, TOTAL MG/L	· .	0.00500		1	•	i :	•	i	0.54000
RSENIC, TOTAL MG/L	<	0.00500	i ·	i	•	i	· ·		0.00500
ARIUM, TOTAL MG/L		0.00500	,	i	•		•	ί	0.10000
ERYLLIUM, TOTAL MG/L	<	0.01000	; ·	i	•	· .	·	i .	0.01000
ADMIUM, TOTAL MG/L	<	0.01000	· ·	i	•	i '	•	i «	0.01000
ALCIUM, TOTAL MG/L	i '	5.01000	· ·	i	•	'	•	i '	110.00000
ROMIUM, TOTAL MG/L	<	0.03000	•	<	0.03000	i .	•	i <	0.03000
DBALT, TOTAL MG/L	i '	0.03000		'	0.00000	•	•		0.03000
OPPER, TOTAL MG/L	<	0.03000		i	•	i .	·	<	0.03000
RON, TOTAL MG/L	i '	0.0000		i	•		•	`	1.80000
EAD, TOTAL MG/L		0.00500	,	i	•	;	•	<	6.00500
AGNESIUM, TOTAL MG/L	`	0.00500		i	•		•	1	8 . 10000
ANGANESE. TOTAL MG/L		•		i	•		•	T H	C . 13000
ERCURY, TOTAL MG/L	.	G Outifit			•			1 .	G , 00050
ICEL, TOTAL MG/:	;	C 03050		1	•		,	1	6,0005; 6,03006
STASSIUM, TOTAL MG/.	; ,	(, (, 1()));			•	•		1 .	
ELENIUM, TOTAL MG/.			:	1	٠			1	3.10000
ELENITOR ICIAL MOS.	1 .	Contraction	1	;					0.00500

FOR CHIEF CONTROL OF C

DATE SAMPLED | 08/23/90 Y | 02/26/90 Y | 08/23/89 Y | 02/02/89 Y | 08/05/88 Y | 02/12/88 Y NICKEL MG/L POTASSIUM MG/L SELENIUM MG/L SILVER MG/L SODIUM MG/L THALLIUM MG/L TIN MG/L VANADIUM MG/L ZINC MG/L ***** METALS DISSOLVED ***** ANTIMONY MG/L ARSENIC MG/L BARIUM MG/L BERYLLIUM MG/L CADMIUM MG/L CHROMIUM MG/L COPPER MG/L LEAD MG/L MERCURY MG/L NICKEL MG/L SELENIUM MG/L SILVER MG/L THALLIUM MG/L ZINC MG/L ***** METALS TOTAL ***** ALUMINUM, TOTAL MG/L ANTIMONY, TOTAL MG/L ARSENIC, TOTAL MG/L BARIUM, TOTAL MG/L BERYLLIUM, TOTAL MG/L CADMIUM, TOTAL MG/L CALCIUM, TOTAL MG/L CHROMIUM, TOTAL MG/L COBALT, TOTAL MG/L COPPER. TOTAL MG/L IRON, TOTAL MG/L LEAD. TOTAL MG/L MAGNESIUM, TOTAL MG/L MANGANESE, TOTAL MG/L MERCURY, TOTAL MG/L NICKEL, TOTAL MG/L POTASSIUM, TOTAL MG/. SELENIUM, TOTAL MG/L SILVER, TOIA, MG/L

I = UNDETERVINATE AND OF NO REF SPECTRA AVAILABLE

WELL NO: 3700W3A JEDBURG W-3A

CONTACTOR DELICATION NO.

PAGE 2.2

WELL NO: 3700W3A JEDBURG W-3	A = = = = = = = = = = = = = = = = = = =		= 6 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2	.======================================	PAGE	2.3
DATE SAMPLE	D 08/27/87 Y	02/11/87 Y	09/12/86 Y	07/30/86 Y	Υ	
ICKEL MG/L	.			.	.	
OTASSIUM MG/L	1 .		i		.	
ELENIUM MG/L	· .	1 .			. 1	
ILVER MG/L	İ .	i .			. 1	
ODIUM MG/L	i .	1	i		. i	
HALLIUM MG/L	1		i i	İ	. i	
IN MG/L	i :	i :	j i	<u> </u>	i	•
ANADIUM MG/L	i	i :	i	i	i	•
INC MG/L	i	i ·	i .	·	i	•
***** METALS DISSOLVED *****	· ·	•		· •	· ì	•
NTIMONY MG/L					·	•
RSENIC MG/L	·	0.05000	< 0.05000	•	•	•
ARIUM MG/L	•	0.18000	D.14000	•	•	•
ERYLLIUM MG/L	· ·	0.18000	0.14000	·	·	•
	•			•	•	•
ADMIUM MG/L	•	< 0.01000	< 0.01000	·	•	•
HROMIUM MG/L	•	0.05000	< 0.05000	• !	•	•
OPPER MG/L	•			·	•	•
EAD MG/L		< 0.05000	0.05000	· !		•
ERCURY MG/L		< 0.00200	< 0.00200		•	
ICKEL MG/L				·	• !	
ELENIUM MG/L	!	< 0.01000	< 0.01000	. !	. [
ILVER MG/L	· .	< 0.05000	< 0.05000		. !	
HALLIUM MG/L				· !	. !	
INC MG/L				· !	. !	
***** METALS TOTAL ****	1 • .) * .	! * . !			
LUMINUM, TOTAL MG/L	1			. 1	.	
NTIMONY, TOTAL MG/L	1 .			. !		
RSENIC, TOTAL MG/L		0.05000	< 0.05000	< 0.05000	. 1	
ARIUM, TOTAL MG/L		0.10000	< 0.10000	0.16000		
ERYLLIUM. TOTAL MG/L	1 .	1	i		. 1	
ADMIUM, TOTAL MG/L	i .	< 0.01000	0.01000	< 0.01000 j	. i	_
ALCIUM, TOTAL MG/L	<u> </u>		i i		. i	-
HROMIUM, TOTAL MG/L	1	< 0.05000	< 0.05000 i	0.14000	i	•
DBALT, TOTAL MG/L	i		0.0000			•
OPPER, TOTAL MG/L	i ·		i i	· i	· i	•
RON. TOTAL MG/L	i	;		·	•	•
AD, TOTAL MG/L	•	0.05000	· 0.05000	< 0.05000	•	•
AGNESIUM. TOTAL MG/L		0.03000	1 0.03000	. 0.03000	•	•
			·	·		•
ANGANESE, TOTAL MG/L				6 00000		•
ERCURY, TOTAL MG/L		0.00200	< 0.00200	0.00200	-	٠
ICKEL, TOTAL MG/L						
DTASSIUM, TOTAL MG/.	4				ļ	
ELENIUM, TOTAL MG .			4,14,1,14,1	· 0.61666		
ILVER, TOTAL MG/.		0.05000	0.05000 (0.05000	i i	

THAT I TH

WELL NO: 3700W3A JE	DBURG W-3A									PAGE 3
DA	TE SAMPLED	02/17/94 Y	08/	10/93 Y	04/15	/93 Y	02/23/93 Y	08/28	3/92 Y	02/24/92 Y
SODIUM, TOTAL MG/L			1	. 1				1 .		
THALLIUM, TOTAL MG/L	İ		İ	. i		İ		İ.	į	
VANADIUM, TOTAL MG/L			j	. 1		j		1 .	1	•
ZINC, TOTAL MG/L			Ì	. 1		İ		1 .	ĺ	
***** ORGANIC ACIDS ***	•• •		*	. 1	• .	•		• .	*	
***** ORGANIC BASE ****	• •		•	. 1	• .	*	•	 • .	*	
***** ORGANIC OTHER ***			j •	. 1	• .	j +		• .		•
***** VOLATILE ORGANICS			*	. 1	• .	j •		 • .		
***** RADIOACTIVITY ***	** *		j *	ĺ		i •		1 •		

U = UNDETECTED

N = NOT REPORTED

A = +/- (APPROXIMATE)

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN

WELL NO: 3700W3A JEDBURG	W-3A						PAGE	3.1
DATE SA	MPLED	12/04/91 Y	11/04/91 Y	/ 08/20/91 Y	03/22/91 Y	02/12/91	/ 0	9/18/90 Y
SODIUM, TOTAL MG/L	1		l .] .	1	35.00000
THALLIUM, TOTAL MG/L	<	0.00500	j .		i .	. i	j «	0.00500
VANADIUM, TOTAL MG/L	1	•					<	0.03000
ZINC, TOTAL MG/L	<	0.03000	Ì .		i .	i .	İ	0.03000
***** ORGANIC ACIDS *****	•) • .	. .	· · · · · · · · · · · · · · · · · · ·	•		
***** ORGANIC BASE *****		•	! • .	 •	• .	1 •	•	•
***** ORGANIC OTHER *****	*			 •		1 * .		
***** VOLATILE ORGANICS ****	•	•	l• .	1 •			•	
***** RADIOACTIVITY *****	*		l • .	. •				

U = UNDETECTED A = +/- (APPROXIMATE)

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

N = NOT REPORTED

> = GREATER THAN < = LESS THAN

WELL NO: 3700W3A	JEDBURG W-3A								PAG	E 3.2
	DATE SAMPLED!	08/23/90	Y	02/26/90 Y	08/23	3/89 Y	02/02/89 Y	08/05/88	Y	02/12/88
SODIUM. TOTAL MG/L	1		1		1	. I				
THALLIUM, TOTAL MG/L	İ		j	•	j .	. j			İ	
VANADIUM, TOTAL MG/L	ì		İ		j .	.			ĺ	
ZINC, TOTAL MG/L			1	•	1 .	.				
***** ORGANIC ACIDS	• • • • • •				 • .	.	• .	• .	•	•
***** ORGANIC BASE *	• • • • •			•	• .	. 1	• .		*	
***** ORGANIC OTHER	***** *		•		 • .	. 1	• .		•	
***** VOLATILE ORGAN	ICS ***** *		j •		i • .	. 1	• .	• .	*	
***** RADIOACTIVITY	•••••		i *		i •	Ì	•	*	j •	

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN

WELL NO: 3700W3A	JEDBURG W-3A								PAGE	3.3
***************************************	DATE SAMPLED	08/27/87 V	02/	11/87 Y	09/12/	'86 Y	07/30/06 Y) v		Υ
SODIUM, TOTAL MG/L			1	1				1	1	
THALLIUM, TOTAL MG/L		·	i		•	i	•	i :	i	•
VANADIUM, TOTAL MG/L	İ	•	i	i	•	i	•	j :	i	
ZINC, TOTAL MG/L	i		i	. 1		į	•	i .	i	
***** ORGANIC ACIDS	• • • • • • • • • • • • • • • • • • • •	•	1 •	. 1	• .	1 •	•	Ì .	1	
***** ORGANIC BASE *	• • • • •		•	. 1	• .	•	•	1 .	1	
***** ORGANIC OTHER	***** *				• .				Į.	
***** VOLATILE ORGAN	ICS ***** *		1 *	. 1	• .	•	•		1	
***** RADIOACTIVITY	***** *	_	 •		•	1 •		1 .	1	

U = UNDETECTED N = NOT REPORTED A = +/- (APPROXIMATE) I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN

DATE SAMPLE	DI.	02/17/94 Y	1	08/10/93 Y	04	/15/93 Y	1	02/23	3/93 Y	1 08/	28/92 Y	ł	02/24/92
												<u>-</u>	
**** CONVENTIONALS *****	! *	•	ļ •	•					•				•
KALINITY MG/L	!	•	ļ		!		ļ			ļ.		ļ	•
CARBONATE MG/L	!	•	1		1		ļ			ļ		!	•
RBONATE MG/L	ļ	•	1	•	ļ		ļ.			1		1	
LORIDE MG/L	1	12.50000	1	13.40000	ì		1	10.	50000	}	•	1	11.400
ANIDE MG/L	1		1		j		l]		1	
ANIDE MG/L	1	•	1		1		l			{		1	
SSOLVED ORGANIC CARBON MG/L	1		1		Ì		ĺ			İ	•	ĺ	
UORIDE MG/L	1		İ		İ		Í			İ		ł	
TRATE MG/L	Ì		İ	_	İ		i	מ	05000	i		j <	0.050
TRITE AND NITRATE MG/L	Ì		i		i		i			i		i	
ENOLS MG/L	i		i	•	i	·	j			i	•	i	•
LFATE MG/L	Ì <	5.00000	i <	5.00000	i	•	i <	5	00000	i	•	i «	5.000
MPERATURE C	i i	17.80000	1	19.30000	ì	18.10000	1		30000	ì,	9.90000	1	21.900
MPERATURE C	i		i	15.0000	i	10.10000	i		50000		9.00000	i	19.900
**** ELEVATIONS/DEPTHS *****	, ,	•		•	•	•			30000		9.00000		15.500
PTH TO WATER FT	- 1	0.00000	1	•	1	•	1	Α,	00000	! '	0.01000	1	0.000
EV. GROUND WATER SURFACE FT	- 1		1	4.18000	1	0.00000	!		88000		9.88000	!	39.880
**** INDICATORS *****	١.	•	1 .	4.1000		0.0000		39,	80000	} •	9.0000	} _	39.000
Su INDICATORS	1	7.00000	} *	6.78000	1 -	6.97000	} -	٠.	35000	!		} *	7 450
. LAB SU	ŀ	7.00000	1	6.78000	{	6.97000	!		25000	!	7.12000	!	7.450
		•	!	•	ļ	•	ļ	/.	29000	[7.21000	!	7.270
EC. CONDUCTANCE, LAB UMHOS/CM	!		!		! _	•	!			!		!	
ECIFIC CONDUCTANCE UMHOS/CM	!	398.00000	!	394.00000	ļ 3	51.00000	ļ		00000	[35	8.00000	ļ .	255.000
C MG/L	- !	2.37000	!	4.94000	ļ		!	١,	30000	!	2.00000	 <	1.000
**** METALS *****	*		•	•						•		*	
JMINUM MG/L	į		1	•)		Ì)	•)	
TIMONY MG/L	- 1		1		İ		ļ			ļ		1	
SENIC MG/L	1		1	•	1		l			l		!	•
RIUM MG/L	ţ		1	•	{		(ł		!	
RYILLIUM MG/L	1		1	•	1		1			1	•	}	
DMIUM MG/L	i		İ		j		İ			İ		1	
CIUM MG/L	j		i		j	_	ì			j		Ì	
ROMIUM MG/L	j		i		i		i			i		i	
BALT MG/L	i	,	i	,	i		i			i	•	i	·
PPER MG/L	i	•	i	•	i		i	•		i	•	Í	•
OR WOAL	i		i	•	i		i	•		i	•	İ	
AD MG/L	;	•	1	•				•		1			•
SNESIUM MG/s	-		1	•	1		!			1	•	1	
	}		;	•	!	,				1		!	•
NGANESE MG/L	1		1		}		1			i		-	

| 140 | 141 OMMETERMINATE AND THE TO THE THE ALATEAN E

DATE SAMPLE	DI	12/0	4/91 Y	1 1	1/04	1/91 Y	1	08/20	/91 Y	1	03/22/91 Y	ł	02/1	2/91 Y	i i	09/18/90 Y
**** CONVENTIONALS ****	1 •			. •			•			 •		 [*			 *	
LKALINITY MG/L	i			i			i			i	•	i			i	236.00000
SICARBONATE MG/L	i			i	Ì		i			i		i		•	i	236.00000
CARBONATE MG/L	i			j			i			i		i		•	.	1.00000
CHLORIDE MG/L	i	12	. 80000	i	·		j	•		j	12.90000	i		•	i	13.20000
CYANIDE MG/L	j <	٥	.01000	i			i			i		i		•	٠ .	0.01000
YANIDE MG/L	i	_		i			i	· ·		i		i		•	ĺυ	10.
ISSOLVED ORGANIC CARBON MG/L	ì			i	•		ì	•		ì	•	i		•	ì	
LUORIDE MG/L	i			i	•		i	•		i	•	i		•	ì	•
ITRATE MG/L	i	Ω	. 05000	i			i	•		í	•	i		-	· <	0.05000
ITRITE AND NITRATE MG/L	i	_		i	•		i	•		<	0.05000	•		•	¦ `	0.05000
HENOLS MG/L	i <	n	. 01000	i	•		i	•		`	0.03000	i		•	ĺJ	0.00000
SULFATE MG/L	1 <		. 00000	i	•		i	•		. .	5.00000	i		•	<	5.00000
EMPERATURE C	i i		30000	i	10	10000	i	25	10000	1	5.00000	ì	18	.00000	`	
EMPERATURE C	i		. 00000	i			i		90000	ì	•	ì		. 00000	ì	•
***** ELEVATIONS/DEPTHS *****	1 .		. 00000		•			20.	50000		•	i .	23	. 00000	١.	•
EPTH TO WATER FT	i	3	04000		ું	68000	(٠.	00000		•	l "	0	.00000		•
LEV. GROUND WATER SURFACE FT	- 1		84000	<u> </u>		20000	1		88000	<u> </u>	•	ł		.88000	1	•
***** INDICATORS *****		50	. 04000		30.	20000					•		39	. 88000		•
H SU	i	6	98000	1	۶.	92000	i '	7.	36000	•	•	i '	7	. 31000	¦ `	•
H. LAB SU	i		39000	ł	U.	32000	i		30000		•	i		. 29000	;	•
PEC. CONDUCTANCE, LAB UMHOS/CM	i	•	. 03000	ì	•		ì	• •	30000	ì	•	ì	•	. 23000	}	•
PECIFIC CONDUCTANCE UMHOS/CM	i	356	00000	Ι.	367	00000	ì	362	00000	ì	•	ì	343	.00000	ì	•
OC MG/L	١ ،		00000	l '	30, .	00000	ì		00000	l	•			.00000	ì	•
***** METALS ****	1	-	. 00000		•			٤.	00000		•		•	. 00000		•
LUMINUM MG/L		•	•	1	•		1	•		¦ `	•	1		•	, ,	1.00000
NTIMONY MG/L	- 1	•	•	1	•		1	•		1	•	}		•	ĺυ	24.
RSENIC MG/L	i	•	•	i	•		1	•		[•	[•	ΙU	24.
ARIUM MG/L	- 1		•	}	•		1	•			•	1		•	1 0	0.14000
ERVILLIUM MG/L	}		•	}	•		1	•		1	•	}		•	lu	1.
ADMIUM MG/L	- }	•	•	}	•		}	•		1	•	1		•	1 11	
ALCIUM MG/L	- (•		(•		ł	•		!	•	Į.		•	10	3. 53.00000
HROMIUM MG/L	- 1	•] }	•		!	•		<u> </u>	•	!		-	1	
OBALT MG/L	- 1	•	•	ļ	•		1	•		ļ	•	1		•	l U	6.
OPPER MG/E	1			!	•		!	•		!	•	1		•	U	4.
RON MG/L	1			}	•		}	•		ļ	• .	1		•	U	3.
EAD MG/L	1			1	•		1			!	•	1) ()	4.
	1			1	•		1]	•)			1 1	4.
AGNESIUM Mu.,	1			!			ļ]		!				8.0000
ANGANESE MG : ERCURY MG :				1			1			!	•	ı			i	(, 1506) (, 00a(s)

MERCURY MGT.

DESCRIPTION OF THE SHORTER AND T

DATE SAMPLES) (08/23	/90 Y	Į.	02/26/	/90 Y	08/	23/89 Y	ı	02/02	2/89 Y		08/0	5/88 Y	(02/1	2/88 V
												·			<u>.</u> 		 -
**** CONVENTIONALS *****	•						*	•									
KALINITY MG/L	Į			1					1			į .			1		
CARBONATE MG/L	1			l					1			1			1		
RBONATE MG/L	Ì			1		i			1			1			1		
LORIDE MG/L	ì			1	12.3	30000	ľ		1	10.	. 00000	ì			i	16	.00000
ANIDE MG/L	1			j					j			İ			i		
ANIDE MG/L	i			j					į			į			i		
SSOLVED ORGANIC CARBON MG/L	i	•		i	•			•	i			i		•	i		•
JORIDE MG/L	i	•		i	•			•	i	0	60000	i		•		1	.0000
TRATE MG/L	}	•		<	۰.٬	5000		•	1 .		. 10000	ì		•	ì `		. 1000
TRITE MO/L	}	•		' `	υ.ι	,5000		•	\ *	u.	. 10000	1		•	ł	U	. 1000
	1	•		1	•			•	!	•	•			•	!		•
ENOLS MG/L	{			1				•	!			!		•	!	_	
LFATE MG/L	!			ļ <		00000		. •	!		.00000	Į		•	ļ <		.0000
MPERATURE C	ļ		00000	ļ		00000		4.00000	ļ		. 00000	!		. 00000	ļ		. 0000
MPERATURE C	1	22.	00000)	15.0	00000	2	5.00000	j	22.	. 00000	1	15	. 00000	1	25	. 0000
**** ELEVATIONS/DEPTHS *****	•			•	•	į	•) •			•		•	† *		
TH TO WATER FT	1	3.	10000	}	0.4	15000		1.42000	1	0.	83000	!	3	.99000	1	0	.5000
EV. GROUND WATER SURFACE FT	1	36.	78000	l	39.4	13000	3	8.46000	ļ	39.	.05000	1	35	. 89000	l	39	.3800
**** INDICATORS *****	 *			į •	_	i	*					į .			į .		_
Su	i	7.	20000	i	7.0	3000 i		7.10000	i	7	28000	i	7	. 35000	i	7	6000
LAB SU	i		37000	ì		5000		7.28000	i		09000	i		.:8000	i		. 2000
C. CONDUCTANCE, LAB UMHOS/CM	i	•		i	,,,	10000			i			i	•		i	•	
CIFIC CONDUCTANCE UMHOS/CM	i	364	00000	i	277.0	nnnn i	37	4.00000	í	323	00000	1	302	. 00000	i	312	. იიიი
MG/L	1		00000	ł		00000		1.00000	{		20000	1		.57000	.		. 1000
**** METALS ****		٥.	00000		2.0	ן טטטטט	*	1.00000		2.	20000		5	.5/000			. 1000
·	"	•	i	! *	•			•	1 *	•		*		•	! *		•
JMINUM MG/L	}	•		}	•			•	1			1		•	}		•
IMONY MG/L	}	•		}	•	!		•	1			}		•	!		•
ENIC MG/L	ļ			!		!		•	!			ļ		•	ļ		•
IUM MG/L	ļ			!		ļ		•	ļ .			ļ		•	!		
YILLIUM MG/L	Ţ			ļ	•				1			ļ			!		-
MIUM MG/L	1								1			İ			1		
CIUM MG/L	1			1		- 1			1			1			1		
OMIUM MG/L	i			ì		j			i			Ì			ì		
ALT MG/L	i			i	•	j			j			i		•	i		
PPER MG/L	i	•		i	•	i		•	i			i		•	į.		•
DN MG/L	i	•		i	•	· ·		•	i	•		ί			!		•
ND MG/L	1	•		i	•	!			;	•) 			,		
	1			1	•]			1)			t		
INESTUM MG/L	1	-				!			1								
GANESE MG/L	1			[i			ī			Į.					

TO THE PROPERTY OF THE PROPERT

in of FAREE THAT I have been seen as a second of the secon

WELL NO: 3700W4A JEDBURG W-4A PAGE 1.3 DATE SAMPLED | 08/27/87 Y | 02/11/87 Y | 09/12/86 Y | 07/30/86 Y | Y | ***** CONVENTIONALS ***** | * ALKALINITY MG/L BICARBONATE MG/L CARBONATE MG/L CHLORIDE MG/L 14.00000 13.90000 l 14.00000 | CYANIDE MG/L . . CYANIDE MG/L DISSOLVED ORGANIC CARBON MG/L 19.20000 18.70000 FLUORIDE MG/L 1.00000 | < 1.00000 1.30000 | NITRATE MG/L 1.00000 l < 1.00000 1 < 1.00000 1 NITRITE AND NITRATE MG/L . PHENOLS MG/L SULFATE MG/L 1.00000 2.00000 2.00000 TEMPERATURE C 19.00000 17.00000 18.00000 18,00000 | TEMPERATURE C 25.00000 25.00000 25.00000 25.00000 ***** ELEVATIONS/DEPTHS ***** DEPTH TO WATER FT 3.95000 0.33000 4.62000 5.30000 ELEV. GROUND WATER SURFACE FT 35.93000 39.05000 35.26000 34.58000 ***** INDICATORS ***** PH SU 6.74000 7.30000 6.99000 7.08000 PH, LAB SU 7.10000 7.28000 6.93000 7.22000 SPEC. CONDUCTANCE, LAB UMHOS/CM 425.00000 490.00000 SPECIFIC CONDUCTANCE UMHOS/CM 352.00000 354.00000 420.00000 419.00000 TOC MG/L 2.84000 16.80000 23.50000 15.20000 **** METALS ALUMINUM MG/L ANTIMONY MG/L ARSENIC MG/L BARIUM MG/L BERYILLIUM MG/L CADMIUM MG/L CALCIUM MG/L CHROMIUM MG/L COBALT MG/L COPPER MG/L IRON MG/L LEAD MG/L MAGNESIUM MG/L MANGANESE MG/L MERCURY MO/L

CASATER THAN THE SECONDARY

. QUALITIFIED BELOW NO.

^{5 (}Milit 11 75) the Control Alle of the Con-A SE + - LITTE (DIMETE)

TO BE OFFICE PROTECTION AT PARTY AND THE ANALYSIS . F.

DA	ATE SAMPLED	02/17/94 Y	08/10/93 Y			08/28/92 V	02/24/92
ICKEL MG/L	1	•					
DTASSIUM MG/L	1					1	
ELENIUM MG/L	Ì		į .		_	i i	_
ILVER MG/L	İ		i			i i	•
ODIUM MG/L	i	•	i ·	·	•	i	•
HALLIUM MG/L	i	•		·	•	i i	•
IN MG/L	ì	•	}	•	•	}	•
	1	•	•	٠	•	·	•
ANADIUM MG/L	!	•		•	•		•
INC MG/L	!	•		•	•		-
***** METALS DISSOLVED	• • • • • •	•	•		•	*	* .
NTIMONY MG/L	1					l . l	
RSENIC MG/L	1	•	1				
ARIUM MG/L	1		i .			1	
ERYLLIUM MG/L	į		i			i i	
ADMIUM MG/L	i	•	i .	·	į	i i	·
ROMIUM MG/L	ì	•	,	•	•	i ' i	•
OPPER MG/L	i	•	•	•	•	• !	•
EAD MG/L		•		•	•		•
	!	•		•	•		•
RCURY MG/L	}	··		•	•	. !	•
CKEL MG/L	!	•			•	!	•
LENIUM MG/L	į.	•			•	. !	-
LVER MG/L	Ì		1) . }	
MALLIUM MG/L	1						
NC MG/L	1		i				
***** METALS TOTAL ****	••] •	•	i •	•	•	i • . i	*
UMINUM. TOTAL MG/L	i	·	i	•	-	i i	
TIMONY, TOTAL MG/L	i	•	·	•	•	·	•
SENIC, TOTAL MG/L	ł	•	•	•	•		•
	}	•	•	•	•		•
RIUM, TOTAL MG/L	<u> </u>	•	•	•	•		•
RVLLIUM, TOTAL MG/L	!	•	! . !	•	•		•
DMIUM, TOTAL MG/L	!	•					•
LCIUM, TOTAL MG/L	\$,				
ROMIUM, TOTAL MG/L	1						
BALT, TOTAL MG/L	1						
PPER, TOTAL MG/L	İ		i . i			i . i	
ON, TOTAL MG/L	i		i i			i i	
AD, TOTAL MG/L	i		i i	·	•	i i	•
GNESIUM, TOTAL MG/L	i	•	,	•	•		•
	ļ			•			•
NGANESE, TOTAL MG/L	!	,			•		•
RCORY, TOTAL MG/:	j			. 1	•	1	•
CHELL TOTAL MG/L	1					;	
TASSIUM, TOTAL Mo.	1			. 1			
LENION, TOTAL MG/L	j		l i				
LYER, TOTA, MG/L	i		i		•		

F. BERGHTER I = UNDETERMINATE AND THE FEE THE AVAILABLE

WELL NO: 3700W4A JEDBURG W-4A

SEATER THAT I WITH SEATER

PAGE 2

DATE SAMPLE	DI	12/04/91 Y	l .	11/04/91 Y	1	08/20/91 Y	l	03/22/91 Y	1	02/12/91 Y	l	09/18/90 Y
					· 		<u>-</u>		<u>-</u>		<u>.</u>	
NICKEL MG/L	ļ		!		ļ		Į.	•	1	•	ļυ	6.
POTASSIUM MG/L	ļ		ļ		ļ	•	ļ	•	ļ	•	Į.	2 .20000
SELENIUM MG/L	Į	•	ļ	•	ļ	•	į .	•	l	•	J	0.00000
SILVER MG/L	ļ		ļ		l	•	ı	•	ł	•	U	5.
SODIUM MG/L	ļ		ļ	•	į .	•	1	•	Į.	÷	l	35.00000
THALLIUM MG/L	- 1		ļ	•	Į	•	l .	÷	Į.		IJ	0.00000
TIN MG/L	1		1		l		1		Į.		l N	0.00000
VANADIUM MG/L	l	,	1		i		1		Į		U	5.
ZINC MG/L	1		ļ		į		1		Į		IJ	0.00000
***** METALS DISSOLVED ****			•					•	į *			
ANTIMONY MG/L	! <	0.00500	ĺ		İ		ĺ	•	İ		į	
ARSENIC MG/L	İ <	0.00500	i		İ		i		i	•	į	
BARIUM MG/L	i		i		i		i	•	i	•	i	·
BERYLLIUM MG/L	i <	0.01000	i		i	•	i	•	i	•	i	•
CADMIUM MG/L	i <	0.01000	i	•	i	•	i	•	i	•	í	•
CHROMIUM MG/L	i <	0.03000	i	•	ί <	0.03000	i	•	i	•	i	•
COPPER MG/L	١ <	0.03000	i		i	0.0000	i	•	i	•	i	•
LEAD MG/L	i «	0.00500	i	•	i	•	i	•	i	•	i	•
MERCURY MG/L	i «	0.00050	i	•	i	•	i	•	i	•	i	•
NICKEL MG/L	i «	0.03000	i	•	i	•	i	•	ì	•	i	•
SELENIUM MG/L	١ <	0.00500	i	•	ì	•	ì	•	ì	•	ì	•
SILVER MG/L	Ì <	0.03000	ì	•	ì	•	i	•	ì	•	i	•
THALLIUM MG/L	i <	0.00500	ì	•	ì	•	ì	•	ì	•	ì	•
ZINC MG/L	i <	0.03000	i	•	ì	•	ì	•	ì	•	ì	•
***** METALS TOTAL ****				•	i *	•		•		•		•
ALUMINUM, TOTAL MG/L	i	· '	i	•	ì	•	1	•	ì	•	ì	0.72000
ANTIMONY, TOTAL MG/L		0.00500	1	•	ì	•	ì	•	ì	•	i	0.72000
ARSENIC, TOTAL MG/L	1	0.00500		•	ì	•	ì	•	ì	•		0.00500
BARIUM, TOTAL MG/L	1	0.00300 1		•	ì	•	ì	•	1	•	`	0.14000
BERYLLIUM, TOTAL MG/L	١ ،	0.01000		•	ì	•	1	•	1	•		0.01000
CADMIUM, TOTAL MG/L	1 2	0.01000		•	i	•	1	•	ì	•	`	0.01000
CALCIUM, TOTAL MG/L	1	0.01000		•	}	•	ì	•	1	•	`	74.00000
CHROMIUM. TOTAL MG/L		0.03000		•	\ <	0.03000	1	•	1	•		
COBALT, TOTAL MG/L	1	0.03000		•	`	u.u3uuu	1	•	}	•	· ·	0.03000
			}	•	}	•	1	•	1	•	· ·	0.03000
COPPER, TOTAL MG/L	 	0.03000		•	}	•	!	•	1	•	<	0.03000
IRON, TOTAL MG/L	!			•	ļ	•	!	•	!	•		3.10000
LEAD, TOTAL MG/L	· · ·	0.00500		•	{		1	•	1	•		0.00600
MAGNESIUM, TOTAL MG/L	!	. !			[•	1		ļ		ļ	8.00000

0. 75 16; - God Herrist (FRE) - 2 1 - 2015 (GRANDES

0.00050

0.03000

0.00500

0.03000

Geralter Bratis (1996) Gertelat 181 - Brasin Ma 0.21000

 G_{+} (G) (G) (G)

0.03066

2,00000

C. 00566

4. 638066

I - UNDETERMINATE AND OF HE REY SPECTRA AND INC.

MANGANESE, TOTAL MG/L

MERCURY, TOTAL MG/L

POTASSIUM, TOTAL MG.

SELENIUM, TOTAL MG/L

NICKEL, TOTAL MG/L

STEVER, TOTAL MOVE

DATE SAMPLED	08/23/90 Y	02/26/90 Y	08/23/89 Y	02/02/89 Y	08/05/88 Y	02/12/88
ICKEL MG/L	l		l			
OTASSIUM MG/L	i '	·	i i		· i	•
SELENIUM MG/L		·	·	·	· 1	•
SILVER MG/L		·	· ·	, ;	. }	•
SODIUM MG/L	·	•	·	•	, }	•
THALLIUM MG/L	•	٠	•	•		•
IN MG/L	•	·	•	• }	•	•
/ANADIUM MG/L	•	٠	•		•	•
	•	·	·	•	. [•
INC MG/L				•		
***** METALS DISSOLVED *****	•	•	•	• . !		•
NTIMONY MG/L			. [· !	· [•
ARSENIC MG/L			. 1	. [. !	•
BARIUM MG/L				. 1	. 1	
BERYLLIUM MG/L	1			. 1	. 1	•
CADMIUM MG/L) . !	. 1		. 1	. 1	•
CHROMIUM MG/L	1		. 1	. 1	. 1	
OPPER MG/L	1	, 1		. i	, 1	
EAD MG/L	j			. i	. i	
MERCURY MG/L	i	,		i	i	
ICKEL MG/L	·	·		· i	i i	
SELENIUM MG/L	·	·	·	·	• •	•
SILVER MG/L	·	•	·		•	•
THALLIUM MG/L	·	•	•		• ;	•
INC MG/L		•	·	!		•
				•	• ' !	
***** METALS TOTAL ****	! '	•				•
LUMINUM, TOTAL MG/L	·	·	•	. 1	• }	•
NTIMONY, TOTAL MG/L				. !		•
RSENIC, TOTAL MG/L				· !		•
ARIUM, TOTAL MG/L			. <u>!</u>	. !		•
BERYLLIUM, TOTAL MG/L			!	. !	. !	
ADMIUM, TOTAL MG/L				. !		
ALCIUM, TOTAL MG/L			. !	. 1		•
HROMIUM, TOTAL MG/L				. (,
OBALT, TOTAL MG/L	l . I			. (,
OPPER, TOTAL MG/L	i i			i	į.	
RON, TOTAL MG/L	i i	·		i	i	
EAD. TOTAL MG/L	i i	•	·	· i	· ;	•
AGNESIUM, TOTAL MG/L	; · .	•	•	· }	•	•
					•	•
ANGANESE, TOTAL MG/L				. !		•
MERCURY, TOTAL MG/L	. !			. !		•
ATCHEL, TOTAL MG/L			. i	· •		•
POTASSIUM, TOTAL MG/			. 1		. 1	
ELENIUM, TOTAL MG/.			·	. 1	. 1	
FILLER, TOTAL MG/.	l I	1		1		

^{197 (1977) 1974 | 1974} UNDETERMINATE AND OF NO PER SPECTRA ANAILABLE

WELL NO: 3700W4A JEDBURG W-4A

PAGE 2.2

WELL NO: 3700W4A	JEDBURG W-4A					PAGE	2.3
=======================================		***********					5=5=5=
	DATE SAMPLED	08/27/87 Y	02/11/87 Y	09/12/86 Y	07/30/86 Y	Y	Y

DATE SAMPL	ED) 08/27/87 Y	02/11/87 Y	09/12/86 Y	07/30/86 Y	Y	
ICKEL MG/L		.	.	· · · · · · · · · · · · · · · · · · ·		
OTASSIUM MG/L		i	1	i i	i i	•
ELENIUM MG/L	i	i	i ·	i 'i	· i	•
ILVER MG/L	i :	i		•		•
DDIUM MG/L		i		; · ;	· •	•
HALLIUM MG/L	i '	i		; · ;	· .	•
IN MG/L	i	ì	i	ì ; i		•
NADIUM MG/L	,		·	•	•	•
INC MG/L	i	· ·	i ·	•	·	•
***** METALS DISSOLVED *****		i •		·	•	•
NTIMONY MG/L				1	•	•
SENIC MG/L	· '	< 0.05000	< 0.05000	; · ;		•
RIUM MG/L	i '	0.20000	< 0.10000		•	•
RYLLIUM MG/L	,	1 0.20000	1 0,10000			•
DMIUM MG/L	•	< 0.01000	< 0.01000	·		•
ROMIUM MG/L	· ·	< 0.05000	< 0.05000	·	·	•
PPER MG/L		1 . 0.05000	0.0000		}	•
AD MG/L	·	< 0.05000	< 0.05000	· ;	•	•
RCURY MG/L	•	< 0.00200		¦ '	•	•
CKEL MG/L	·	0.00200	< 0.00200	•	•	
LENIUM MG/L	•	< 0.01000	< 0.01000		·	•
LVER MG/L	•	0.05000	i i		•	•
ALLIUM MG/L	·	0.05000	0.05000	! • • • • • • • • • • • • • • • • • • •	•	•
NC MG/L	•				·	•
***** METALS TOTAL *****						•
UMINUM, TOTAL MG/L			, ·			•
TIMONY, TOTAL MG/L	·			•		•
SENIC, TOTAL MG/L		0.05000	0.05000	. 0.05000		•
	·	< 0.05000	0.05000	< 0.05000	· !	•
RIUM, TOTAL MG/L	•	0.11000	0.21000	0.14000	•	•
RYLLIUM, TOTAL MG/L	•	0.0000		0.000		•
MIUM, TOTAL MG/L		< 0.01000	< 0.01000	< 0.01000		•
CIUM, TOTAL MG/L	· ·		, 25000			•
ROMIUM, TOTAL MG/L	,	< 0.05000	< 0.05000	0.06000	•	
BALT, TOTAL MG/L					• !	•
PPER, TOTAL MG/L					. !	•
ON, TOTAL MG/L	•		0.05005	, , , , , ,	. !	•
AD, TOTAL MG/L		< 0.05000	< 0.05000	< 0.05000	<u> </u>	•
SNESIUM, TOTAL MG/L					•	
NGANESE, TOTAL MG/L			1		. i	•
RCURY, TOTAL MG/L		0.00206	< 0.00206	· U.00206		
CKEL, TOTAL MG/L			1	!		
TASSIUM, TOTAL MG				ļ . i		
LENIUM, TOTAL MG/.		6.61000	() () () () () ()			
LVER, TOTAL MOVE	1 .	i - 0.05000	1 - 0.0500	(0.05 00 0 !		

Solve the KREFIETEL ASSET AFROMOMENTS

TO THOSE TERMINATE AND HE HET SHELTRE AVELLABLE

WEATER THAN E. E. DEVE DIANTIFIED BELOW M.

			•							
VARROLUM, IUTAL MG/L		ļ	•		ł		.		. (
ZINC, TOTAL MG/L	1 .	1		1 .	- 1		. !		. !	
***** ORGANIC ACIDS *****	! *	1 •		! • .	1	•		*	.	
***** ORGANIC BASE ****	 •	1 •		1 • .	1		. 1	•	. 1	
***** ORGANIC OTHER ****	1 • .	1 •		! • .	1	•		•	.	
***** VOLATILE ORGANICS *****	İ * .	1 •		1 • .	1	•		•	. 1	
***** RADIOACTIVITY *****	•	į •	,	! • .	į			*	. (

N = NOT REPORTED
U = UNDETECTED
A = +/~ (APPROXIMATE)

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN
J = QUANTIFIED BELOW MDL</pre>

PAGE	3.	1
------	----	---

DATE SAMPLE	D	12/04/91 Y	1	11/04/91 Y	08/20	/91 V	03/22/91 Y	02	/12/91 Y	09/18/90
SODIUM, TOTAL MG/L	1]	. 1		1		1	. }	32.0000
THALLIUM, TOTAL MG/L	 <	0.00500	Ì			ĺ	•	i i	. 1	< 0.0050
VANADIUM, TOTAL MG/L	į	•	Ì	. 1		į	•	ì		< 0.0300
ZINC, TOTAL MG/L	 <	0.03000	İ	. 1		- 1		1	. 1	0,0300
***** ORGANIC ACIDS *****	*			. 1		1	• .	1 *	. 1	•
***** ORGANIC BASE ****	j •			. 1	• .	i	• .	j •	. 1	• .
***** ORGANIC OTHER *****	1 •		•	. 1	• .	1	• .) •	. 1	• .
***** VOLATILE ORGANICS *****	1 *			. 1	• .	l l	• .	1 •	. !	•
***** RADIOACTIVITY *****	1 *			. 1		į	•			•

U = UNDETECTED

N = NOT REPORTED A = +/- (APPROXIMATE)

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN

J = QUANTIFIED BELOW MDL

`

1

WELL NO: 3700W4A	JEDBURG W-4A						PAGE 3.2
	DATE SAMPLED!	08/23/90 Y	02/26/90 Y	08/23/89 Y	02/02/89 Y	08/05/88 Y	J 02/12/88 Y
SODIUM, TOTAL MG/L			! .		.	i .	1 .
THALLIUM, TOTAL MG/L	Ì		i .	i .	<u>.</u>		
VANADIUM, TOTAL MG/L	į		j .	i .		i .	į .
ZINC, TOTAL MG/L	j j		i .		.	1 .	
***** ORGANIC ACIDS *	****	•) • .			l * .	i • .
***** ORGANIC BASE **	•••	•	i • .	! •	• .	i • .	į • .
***** ORGANIC OTHER *	•••• j •	• .) • .	i • .) • .) • .	j • .
***** VOLATILE ORGANI	CS *****	•	j • .	j • .		i • .	j • .
***** RADIOACTIVITY *	****	•	i •	i •	i •	i •	i •

U = UNDETECTED

N = NOT REPORTED A = +/- (APPROXIMATE)

1 = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN

WELL NO: 3700W4A	JEDBURG W-4A						PAGE 3.3
	DATE SAMPLED	08/27/87 Y	02/11/87 Y) 09/12/86 Y	07/30/86 Y) Y)	Y
SODIUM, TOTAL MG/L	1		1 .	1 .	1 .	. 1	
THALLIUM, TOTAL MG/L	ì		1 .	1 .	1 .	. 1	
VANADIUM, TOTAL MG/L	ì) .		1 .	1 . 1	•
ZINC. TOTAL MG/L	j			1 .	1 .	1 . !	
***** ORGANIC ACIDS *		•	1 * .	1 * .	1 •	1 . 1	•
***** ORGANIC BASE **			1 * .) •	i •	1 . 1	
***** ORGANIC OTHER *	• • • • • • • • • • • • • • • • • • • •	•	1 * .		1 •		
***** VOLATILE ORGANI	CS ***** *	•) * .	1 * .			•
***** RADIDACTIVITY *	****	•		1 • .	*	} .	

U = UNDETECTED >= GREATER THAN < = LESS THAN
N = NOT REPORTED A = +/- (APPROXIMATE)
U = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

WELL NO: 3700W5A JEDBURG W-5A DATE SAMPLEDI 02/17/94 Y | 08/10/93 Y | 04/15/93 Y | 02/23/93 Y | 08/28/92 Y | 02/24/92 Y ***** CONVENTIONALS ***** ALKALINITY MG/L BICARBONATE MG/L CARBONATE MG/L 14.50000 | 14.70000 | CHLORIDE MG/L 12.70000 l 13.00000 CYANIDE MG/L CYANIDE MG/L DISSOLVED ORGANIC CARBON MG/L FLUORIDE MG/L 0.07940 0.05000 NITRATE MG/L NITRITE AND NITRATE MG/L PHENOLS MG/L 8.62000 5.67000 SULFATE MG/L 5.00000 9.49000 22.50000 20.40000 22.00000 25.00000 20.80000 I 17.70000 TEMPERATURE C 17.70000 19,00000 19.30000 TEMPERATURE C **** ELEVATIONS/DEPTHS ***** 6.97000 6.91000 7.02000 6.43000 DEPTH TO WATER FT 11.34000 6.54000 I 34.85000 34.90000 35.44000 ELEV. GROUND WATER SURFACE FT . ***** INDICATORS ***** PH SU 6.86000 6.88000 I 6.81000 7.31000 7.44000 7.65000 7.39000 7.48000 7.31000 PH. LAB SU SPEC. CONDUCTANCE, LAB UMHOS/CM 410.00000 420.00000 290,00000 SPECIFIC CONDUCTANCE UMHOS/CM 453.00000 493.00000 I 424.00000 8.66000 2.00000 1.00000 TOC MG/L 45.20000 2.34000 ***** METALS ALUMINUM MG/L ANTIMONY MG/L ARSENIC MG/L BARIUM MG/L BERYILLIUM MG/L CADMIUM MG/L CALCIUM MG/L CHROMIUM MG/L COBALT MG/L COPPER MG/L IRON MG/L LEAD MG/L MAGNESTUM MG 1. MANGANESE MG/L MERCURY Mark

WHATER THAT A SECOND TOUR OF THE PROPERTY OF T

DATE SAMPL	FDI	12/04/91 Y	1	11/04/91 Y	1	08/21/91 Y	1	03/22/91 V	1 02/	12/91 Y	1	09/18/90 \
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					<u>-</u>	
***** CONVENTIONALS *****	•		*	•	•				} *			-
ALKALINITY MG/L	l		ı		l l		1		Į.		1	321.00000
BICARBONATE MG/L	1		1		İ		İ		İ		Ì	321.00000
CARBONATE MG/L	Ì		j		İ		j		ì		j <	1.00000
CHLORIDE MG/L	İ	14.40000	İ		İ		İ	13.70000	i		i	13.7000
YANIDE MG/L	İ‹	0.01000	į		i		i		i		i <	0.0100
YANIDE MG/L	i		i		i	•	i		i	•	ĺυ	10.
ISSOLVED ORGANIC CARBON MG/L	i	•	i	•	i	•	i	•	i	•	i	, .
LUORIDE MG/L	i	•	i	•	i	•	1	•	i	•	;	•
ITRATE MG/L	ί <	0.05000	i	•	i	•	i	•	i	•		0.0500
ITRITE AND NITRATE MG/L	`	0.03000	1	•	l	•	<	0.05000	}	•	} `	0.0300
HENOLS MG/L	<	0.01000	}	•	1	•	,	0.05000	1	•	1	10
ULFATE MG/L	- { `		l	•	1	•	[12.10000	ł	•	Įυ	10.
EMPERATURE C	- 1	8.84000	!		!		!	12.10000	! .		!	13.4000
	1	22.20000	}	19.80000	}	19.10000	1	•	•	8.00000	1	•
EMPERATURE C	- .	19.70000	١.	•	! _	21.40000	! .	•] 2	3.00000	1	•
***** ELEVATIONS/DEPTHS *****			! •					•	! •		ļ *	•
EPTH TO WATER FT	- 1	9.59000	!	10.15000	ļ	6.73000	!	•		6.28000	ļ	•
LEV. GROUND WATER SURFACE FT	. !	32.28000	ļ	31.72000	ļ	35.14000	ļ		3	5.59000	1	•
***** INDICATORS *****		•	. *	•				•				•
H SU	Į.	7.11000	ļ	7.08000	ļ	7.36000	ļ .	•		7.37000	1	•
H, LAB SU	į	7.50000	}	•	1	7.39000	Ì	•	j	7.33000	1	
PEC. CONDUCTANCE, LAB UMHOS/CM	ļ	•	Į.		1		1		Į.	•	ļ	
PECIFIC CONDUCTANCE UMHOS/CM	- 1	496.00000	1	486.00000	1	427.00000	1	•	43	9.00000	1	•
OC MG/L	<	2.00000	1		İ	4.00000	1		6	1.00000	1	
***** METALS *****			•				*		*			
LUMINUM MG/L	ļ		t		İ		ĺ		l		İ	18,0000
NTIMONY MG/L	i		İ		İ		İ		į		ĺυ	24.
RSENIC MG/L	į		i		i		İ		j		ĺυ	2.
ARIUM MG/L	i		i	•	i	•	j	•	i	•	ĬĴ	0.0001
ERVILLIUM MG/L	i	*	i	•	i	•	i	•	i	•	Ü	2.
ADMIUM MG/L	i	•	i	•	ľ	•	i	•	i	•	Ιŭ	3.
ALCIUM MG/L	- 1	•	1	•	ł	•	1	•	1	•	1 0	230.0000
HROMIUM MG/L	-	•	ł	•	1	•	1	•	{	•	1	0.0740
OBALT MG/L	!	•	}	•	!	•	!	•		•	!	
OPPER MG/L	}	•]]	•	1	•	1	•	1	0.00800
	!	•	į		!	•	!	•	[•	10	20.
RON MG/L	ļ		ļ.		Į.		1	•	i	•	!	16.0000
EAD MG/L	ļ	•	!		!		l		1	-	1	0.0740
AGNESIUM MG/L	!		t		1		1		1		i	12.0000
IANGANESE MG/L	!		ļ		Į		F		1		į	0.20060
PERCURY MG/1	1		1		l		1		í		ì	O. Oacta

The state of the s

GREATER THAT SEE ST. THAT.

WELL NO: 3700W5A JEDBURG W-SA DATE SAMPLED | 08/23/90 Y | 02/26/90 Y | 08/23/89 Y | 02/02/89 Y | 08/05/88 Y | 02/12/88 Y **** CONVENTIONALS **** | * | * ALKALINITY MG/L BICARBONATE MG/L CARBONATE MG/L CHLORIDE MG/L 12.60000 14.00000 15.00000 CYANIDE MG/L . . CYANIDE MG/L DISSOLVED ORGANIC CARBON MG/L FLUORIDE MG/L 0.50000 | 1.00000 NITRATE MG/L 0.05000 | | < 0.10000 | 0.10000 NITRITE AND NITRATE MG/L . PHENOLS MG/L 9.20000 9.00000 | SULFATE MG/L 9.00000 18.00000 TEMPERATURE C 20.00000 25.00000 24.00000 19.00000 I 19.00000 TEMPERATURE C 17.00000 26.00000 22.00000 15.00000 25.00000 22.00000 ***** ELEVATIONS/DEPTHS ***** 10.85000 7.27000 9.25000 8.25000 11,70000 7.86000 DEPTH TO WATER FT ELEV. GROUND WATER SURFACE FT 34.60000 32.62000 İ 33.62000 30.17000 31.02000 34.01000 ***** INDICATORS ***** 7.15000 PH SU 7.11000 6.71000 7.01000 7.18000 6.84000 PH, LAB SU 7.27000 7.26000 7.38000 7.07000 7.28000 7.31000 SPEC. CONDUCTANCE, LAB UMHOS/CM 479.00000 SPECIFIC CONDUCTANCE UMHOS/CI: 490.00000 420.00000 476.00000 412.00000 404.00000 TOC MG/L 20.00000 I 6.00000 8.00000 7.50000 21.40000 7.17000 ***** METALS ALUMINUM MG/L ANTIMONY MG/L ARSENIC MG/L BARIUM MG/L BERYILLIUM MG/L CADMIUM MG/L CALCIUM MG/L CHROMIUM MG/L COBALT MG/L COPPER MG/L IRON MG/L LEAD MG/L MAGNESIUM MG/L MANGANESE MG/L MERCURY MG/L

0 = 0445 H (15) 10 = 0 = 4 = 0 = 0.43 +4 (+10.75) GREATER THAN THE LESS INVO-TO CHARTIFIED BELOW MAN

I = PROETER MEMOTE AND OF THE REF - SPECTRA AVAILABLE

DATE SAMPLE	ום	08/27/87 Y	1	02/11/87	, 1	09/12/86 Y	1 07/3	0/86 Y	γ Ι	1	_v
			· 						·		
**** CONVENTIONALS *****			1 *	•	1 •		•	. 1	. 1		
KALINITY MG/L	1		İ		İ		į	. i	. 1	i .	
CARBONATE MG/L	İ		i		i	•	i	. i	i	i i	
RBONATE MG/L	i		Ì		ì		ì	. ì	i	j	
LORIDE MG/L	i	· ·	ì	11.00000	ı i	11.00000	i 12	.60000	i i	i	
ANIDE MG/L	i	•	i		i		i -		· i	į	
ANIDE MG/L	i	•	ì	•	i	•	i	·	·		
SSOLVED ORGANIC CARBON MG/L	i	•	i	11.00000	۱ .	25.70000	ì	·	·		
JORIDE MG/L	•	•	1 <	1.00000			,	.10000	•		
TRATE MG/L	i i	•	`	1.20000				.00000	•		
TRITE AND NITRATE MG/L	1	•	1	1.20000	` `	1.00000	'	. 00000		·	
ENOLS MG/L	1	•	1	•	1	•	<u> </u>	•	• [i ·	
LFATE MG/L	- [•	1	20.00000	. !	60,00000			. [•	
	!		!	28.00000		60.00000		.50000		•	
MPERATURE C	}	19.00000	1	18.00000		20.00000	•	.00000			
MPERATURE C	! .	25.00000	1	25.00000		25.00000	[25	.00000	. !		
*** ELEVATIONS/DEPTHS ****	! *	•	ļ •	. •	*	•	. •	·	. [•	
TH TO WATER FT	ļ	11.46000	1	6.90000		10.78000		.36000			
EV. GROUND WATER SURFACE FT	ļ	30.41000	Ţ	34.97000	l Į	31.09000	ļ 30	.51000		,	
**** INDICATORS *****	•	•	•	•		•		.		,	
\$ U	1	6.77000	ì	8.06000)]	7.14000	7	.00000	. 1	j .	
, LAB SU	- 1	7.16000	1	7.56000	1	6.95000	7	.21000			
C. CONDUCTANCE, LAB UMHOS/CM	1	525.00000	i		- 1	•	625	.00000			
CIFIC CONDUCTANCE UMHOS/CM	1	469.00000	1	361,00000	1	587.00000	599	.00000	. 1		
C MG/L	ł	2.74000	ì	81.80000	1	29.10000	346	.00000	. 1	i .	
**** METALS ****				•		•	•	. i			
JMINUM MG/L	İ		j		- İ		İ	. İ	. i		
TIMONY MG/L	Ì		Ì	-	- 1		İ	. i	ì		
SENIC MG/L	İ		i		j		i	. i	i	1	
RIUM MG/L	į		i		i			. i	i		
RYILLIUM MG/L	i		i	•	i	,		i	·		
DMIUM MG/L	i		i	•	i	·			i		
CIUM MG/L	i	•	i	•	i	•		•	. ;		
ROMIUM MG/L	i	•	i	•	i	•	i	·	'	•	
BALT MG/L	ì	•	ì	•	ì	•		•			
PPER MG/L	1	•	1	•	1	•					
DN Mu/L		•	1	•	ļ	•		. !	. !		
	1	*	1	•	- !			. !	. !		
AD MG/L	i	•	ļ	•	ļ			. !	. !		
SNESTUM MG/L	1		1		1			. !	. [
MGANESE MG/L	1		1		1			1	i		

I : INDETERMINATE AND ON THE REF. SPECTRA AVAILABLE

WELL NO: 3700W5A JEDBURG W-5A PAGE 2 DATE SAMPLED | 02/17/94 Y | 08/10/93 Y | 04/15/93 Y | 02/23/93 Y | 08/28/92 Y | 02/24/92 Y NICKEL MG/L POTASSIUM MG/L SELENIUM MG/L SILVER MG/L SODIUM MG/L THALLIUM MG/L TIN MG/L VANADIUM MG/L ZINC MG/L ***** METALS DISSOLVED ***** ANTIMONY MG/L ARSENIC MG/L BARIUM MG/L BERYLLIUM MG/L CADMIUM MG/L CHROMIUM MG/L COPPER MG/L LEAD MG/L MERCURY MG/L NICKEL MG/L SELENIUM MG/L SILVER MG/L THALLIUM MG/L ***** METALS TOTAL ***** ALUMINUM, TOTAL MG/L ANTIMONY, TOTAL MG/L ARSENIC, TOTAL MG/L BARIUM, TOTAL MG/L BERYLLIUM, TOTAL MG/L CADMIUM, TOTAL MG/L CALCIUM, TOTAL MG/L CHROMIUM, TOTAL MG/L COBALT, TOTAL MG/L COPPER, TOTAL MG/L IRON, TOTAL MG/L LEAD, TOTAL MG/L MAGNESIUM, TOTAL MG/L MANGANESE, TOTAL MG/L MERCURY, TOTAL MG/L NICKEL, TOTAL MG/L POTASSIUM, TOTAL MG/L SELENIUM, TOTAL MG/: SILVER, TOTAL MG/L SODIUM, TOTAL MG .

THE PROPERTY OF METERS OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF T

GREATER TOATS FOR DESCRIPTION OF STREET

(DATE SAMPLED	12/0	4/91 Y	11/0	04/91 Y	08	1/21/91 V	1 03/	/22/91 Y	02/	12/91 Y	1	09/18/90
NICKEL MG/L			,	i				1				1 0	30.
POTASSIUM MG/L	Ì			Ì	. i			i		j		ì	3.4000
SELENIUM MG/L	İ			j	. i			i	_	Ì		ĺJ	0.0000
SILVER MG/L	į			Ì	. i			i	-	ì		Ū	5.
SODIUM MG/L	j			Ì	. i		-	i		ì		i	25.0000
THALLIUM MG/L	į			Ì	i		-	ì		j		İJ	0.0000
TIN MG/L	j		-	i	. i			i		ì	_	N	0.0000
VANADIUM MG/L	İ		_	i	. i			i		i	_	i	0.0640
ZINC MG/L	i		•	i	· i		•	i		i	•	ر أ	0.1700
***** METALS DISSOLVED	5 **** j :	•		•	· i		•	i •	•				••••
ANTIMONY MG/L		< 0	.00500	i			•	i	•	i	•	i	•
ARSENIC MG/L			.00500	i			•	i	•	j	•	i	•
BARIUM MG/L	j		. 00000	i			•	i	•	i	•	i	•
BERYLLIUM MG/L	i.	< 0	.01000	1	•		•	i	•	į	•	i	•
CADMIUM MG/L			.01000		•		•	i	•	j	•	i	•
CHROMIUM MG/L		_	.03000	ł	•	<	0.03000	i	•	}	•	i	•
COPPER MG/L	•	_	.03000		•	`	0.03000	i	•	}	•	ł	•
EAD MG/L	!	_		}	٠		•	1	•	1	•	}	•
MERCURY MG/L		•	.00500	}	•		•	1	•	1	•	;	•
NICKEL MG/L		_	.00050	}	•		•	1	•	!	•	l	•
	:	_	.03000		•		•	1	•	!	•	{	
SELENIUM MG/L SILVER MG/L	:		.00500		٠ !		•	1	•	ļ	•	ļ .	•
	•		.03000		٠ !		•	1	•	!	•	ļ	•
THALLIUM MG/L	•		.00500	_	. !		•	1 .	•	! .	•	١	•
****** METALS TOTAL ***		•	•	•	٠ !	•	•		•	ļ •	•	! *	
ALUMINUM, TOTAL MG/L	!				• !		•	!	•	!	•	Į.	21.0000
ANTIMONY, TOTAL MG/L			.00500		٠ !		•	!	•	ĺ	•	ļ	
ARSENIC, TOTAL MG/L	! •	< 0	.00500	ļ	. [•	!	•	[•	ļ .	0.0100
BARIUM, TOTAL MG/L	!	_	•	ļ	. !		•	!	•	!	•	Į	0.1100
BERYLLIUM, TOTAL MG/L			.01000		. !		•	ļ	•	!	•	<	0.0100
CADMIUM, TOTAL MG/L	j,	< D	.01000		.]]	•	!	•	!	0.0100
CALCIUM, TOTAL MG/L	ļ ļ		.]		.]		•	ļ	•)]	290.0000
CHROMIUM, TOTAL MG/L) .	< 0	.03000		.	<	0.03000	1	•	ļ	•)	0.0800
COBALT, TOTAL MG/L	j						•	ì	•	j) <	0.0300
COPPER, TOTAL MG/L		< 0	.03000		. 1		•	ì		j		1	0.0300
IRON, TOTAL MG/L	İ		.		. 1		•	1	•	1		1	17.0000
EAD, TOTAL MG/L	1 •	< 0	.00500	l	. 1			1		Į,		1	0.1000
MAGNESIUM, TOTAL MG/L	1		. 1		. 1			i		ĺ		1	12.0000
MANGANESE, TOTAL MG/L	İ				i, i			İ		1		1	0.2200
MERCURY, TOTAL MG/L	į.	(0	.00050		i, i			i		İ		1 -	0.0005
MICKEL, TOTAL MG/L	į.		.03000							i		į .	0.0300
POTASSIUM, TOTAL MG/.	i	·					•	1				•	3,6000
SELENIUM, TOTAL MG 1	· .		. ᲘᲡᲜᲘᲡ :	•				:	•				0.0050
SILVER, TOTAL MG/.			.00300						•				b. 6366
SODIUM, TOTA, MG/		•							•				.5.0000

PAGE 2.1

L - CREDITORIO GREATER TOAN CONTROL TOAN CON

WELL NO: 3700W5A JEDBURG W-5A

PAGE 2.2

**************			:=: = :=======	# = ===================================		. 	
	TE SAMPLED	D8/23/90 Y	02/26/90 Y	08/23/89 Y	D2/D2/89 Y	08/05/88 Y	02/12/88
NICKEL MG/L					,		
POTASSIUM MG/L	i	· '	•	· ·	·	·	•
SELENIUM MG/L	i	· i	•	·	•		•
SILVER MG/L	j		•	·	·		•
SODIUM MG/L	i	•	•	·	•		•
MALLIUM MG/L	i	· i	•		•		•
IN MG/L	i	·	•	·	•	·	•
ANADIUM MG/L	i		·	i '	•	·	•
INC MG/L	i	·	•	·	·	i i	•
***** METALS DISSOLVED		• ' '	•	•	•	•	
NTIMONY MG/L	}		•		•	i	•
ARSENIC MG/L	j.	•	•	•	•	• •	•
BARIUM MG/L	i	• 1	•	•	•		•
ERYLLIUM MG/L	;	•	•	·	•	•	•
ADMIUM MG/L	ì		•	•	·	•	•
CHROMIUM MG/L		•	•	•	•		•
OPPER MG/L	;	•	•	·	•		•
EAD MG/L	}	•	•	•	•	-	•
ERCURY MG/L	;	•	•	•	•		•
ICKEL MG/L		•	•		•	·	•
ELENIUM MG/L	;		•	·	•	•	•
ILVER MG/L	;	·	•	•	•	•	•
HALLIUM MG/L	i	·	•	•	•		•
***** METALS TOTAL ****				•	•		
LUMINUM, TOTAL MG/L		•	•	•			•
NTIMONY, TOTAL MG/L		·	•	•	•		•
RSENIC, TOTAL MG/L	i	·	•	•	•		•
ARIUM, TOTAL MG/L	ì	•	•	,	•	· i	•
ERYLLIUM, TOTAL MG/L	;	•	•	•	•		•
ADMIUM, TOTAL MG/L	ľ	•	•	•	•	·	•
ALCIUM, TOTAL MG/L	}	•	•	•	•		•
HROMIUM, TOTAL MG/L	ł	·	•	•	•	· '	•
OBALT, TOTAL MG/L	-	• [•	•	•		•
OPPER. TOTAL MG/L	'	•	•	•	•	•	•
RON, TOTAL MG/L	\	•	•	•	•		•
EAD, TOTAL MG/L	· ·	•	•	•		•	•
•	-	• }	•	•	•		•
AGNESIUM, TOTAL MG/L	}		•		•	•	•
ANGANESE, TOTAL MG/L	1		•		·		•
ERCURY, TOTAL MG/L	<u> </u>		•				•
ICKEL TOTAL MG/L	ļ		•			. !	•
CTASSIUM, TOTAL MG/.	!	. !				i	
ELENIUM, TOTAL MG/L	!	,		!			
ILVER, TOTAL MG/L	!	. !	- !	1			
GELUM, TOTAL MG/.	·			;			

WELL NO: 3700W5A JEDBURG W-5A

MERTER EMAN MANTERIER BELOW W.

DATE SAMPLED	08/27/87 Y	1 02/11	/87 Y)	09/12/86 Y) 07/30/86 Y	1	7 }	
DATE SAMPLED!			,,,,,,			, 		
ICKEL MG/L		1 .	J		l .	1 .	i	
OTASSIUM MG/L		i .	ì		i :	i	i	-
ELENIUM MG/L		i :	ì		ì	1	ì	•
ILVER MG/L		i	į		1	i	į	-
ODIUM MG/L	•	i i	į	•		i	į	•
HALLIUM MG/L	•	i .	i	•		i	i	•
IN MG/L	•		i	•			i	•
ANADIUM MG/L	•		i	•			i	•
INC MG/L	•		i	•	· ·	•	i	•
***** METALS DISSOLVED ****	•	•		•				•
NTIMONY MG/L	•			•	,	•		•
RSENIC MG/L	•	l < 0.0	05000 <	0.05000		•	-	•
ARIUM MG/L	•				•		- }	•
ERYLLIUM MG/L	•	ļ .	10000	0.11000	,			•
ADMIUM MG/L	•	٠, ١	01000	0.01000	•	· ·		•
HROMIUM MG/L	•		01000 <			}	}	•
•	•	\ 0.0	05000 <	0.05000	· ·			•
OPPER MG/L	•			, ,,,,,,,	} •	· ·	}	•
EAD MG/L	•		05000 <	0.05000	} •		}	•
ERCURY MG/L	•) < 0.0	00200 <	0.00200	ļ ·]	•
ICKEL MG/L	•					!	Į.	•
ELENIUM MG/L	•		01000 <	0.01000	ļ .	!	Į.	-
ILVER MG/L	•	ļ < 0.0	05000 ! <	0.05000	!			•
HALLIUM MG/L	•	! .	!	•	! -			•
***** METALS TOTAL *****	•	ļ • .	ļ •	•				-
LUMINUM, TOTAL MG/L		! .	ļ				ļ	
NTIMONY, TOTAL MG/L	•		ļ	•			1	
RSENIC, TOTAL MG/L			05000 <	0.05000	0.24000		1	
ARIUM, TOTAL MG/L	•	0.1	12000 <	0.10000	0.63000		}	
ERYLLIUM, TOTAL MG/L	•	} .	1	•		1 .	1	
ADMIUM, TOTAL MG/L		1 < 0.0	01000 <	0.01000	0.02000	1 .	1	
ALCIUM, TOTAL MG/L		1 .	i	•	j .	1 .	1	
HROMIUM, TOTAL MG/L		1 < 0.0	05000 <	0.05000	1.41000	1 .	j	
OBALT, TOTAL MG/L		j.	i		ì.	i .	j	
OPPER, TOTAL MG/L		į .	į		i .	i .	i	
RON, TOTAL MG/L		j i	i				ĺ	
EAD, TOTAL MG/L	•	i < 0.0	05000 i <	0.05000	0.62000	ì	i	•
GNESIUM, TOTAL MG/L	•		1	0.0000	1	ì	ì	•
INGANESE, TOTAL MG/L	•		i	•	·		i	•
RCURY, TOTAL MG/L	•	1 0 0	00200	0.00200	0.00200		į .	•
ICKEL, TOTAL MG/L	•	,	10200	0.00200	1 0.00200	,		•
OTASSIUM, TOTAL MOS.	*		1	•			1	•
		1	(1000 l	6. 6.3697			i	•
ELENIUM, TOTAL MG ()			6100C	0.01000			į	•
ILMER, TOTAL MG/		0.0	05000 j	0.05000	0.05000	!	i	

CONTRACTOR to a facilities of the second 1 - OFFICE TERMINATE AND GROUP REF. SPECTRA AVAILABLE

WELL NO: 3700W5A J	EDBURG W-5A						PAGE 3
0	ATE SAMPLED	02/17/94 Y	08/10/93 Y	04/15/93 Y	02/23/93 Y	08/28/92 Y	02/24/92 v
THALLIUM, TOTAL MG/L	1) .	1 .	1 .	i .] .
VANADIUM, TOTAL MG/L	İ			1 .	i .	j .	1 .
ZINC, TOTAL MG/L	Ì		,	1 .	1 .	1 .	1 .
ZINC, TOTAL MG/L	ì			1 .	1 .	1 .	<u>.</u>
***** ORGANIC ACIDS **	• • •			1 *) • .) • .	1 • .
***** ORGANIC BASE ***	•			1 • .	i • .) • .	1 * .
****** ORGANIC OTHER **			• .	1 •	j • .	į • .	1 •
***** VOLATILE ORGANIC	S ***** *		i • .	i • .	i • .	j • .	i •
***** RADIOACTIVITY **	· • • • • • • • • • • • • • • • • • • •		•		1 •	1 •	1 •

U = UNDETECTED

N = NOT REPORTED A = +/- (APPROXIMATE)

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN

WELL NO: 3700W5A JE	DBURG W-5A						PAGE 3.1
DA	TE SAMPLED!	12/04/91 Y	11/04/91 Y	08/21/91 V	03/22/91 Y	02/12/91 Y	09/18/90 v
THALLIUM, TOTAL MG/L VANADIUM, TOTAL MG/L	<	0.00500					0.00500
ZINC, TOTAL MG/L ZINC, TOTAL MG/L	<	0.03000	:				0.07000
***** ORGANIC ACIDS *** ***** ORGANIC BASE ****			*	*	•	1:	•
***** ORGANIC OTHER ***	•• [•	•				:	
***** VOLATILE ORGANICS ***** RADIOACTIVITY ***		•		:	:	:	:

U = UNDETECTED N = NOT REPORTED A = +/- (APPROXIMATE) I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN J = QUANTIFIED BELOW MDL

WELL NO: 3700W5A	JEDBURG W-5A						PAGE 3.2
	DATE SAMPLED	08/23/90 Y	02/26/90	/ 08/23/89 Y	02/02/89 Y	08/05/88 Y	02/12/88 Y
THALLIUM, TOTAL MG/L	1						
VANADIUM, TOTAL MG/L	İ	•		i .	i .		
ZINC, TOTAL MG/L					1 .	1 .	1 .
ZINC, TOTAL MG/L	1	•	١ .				
***** ORGANIC ACIDS **	**** *	,	l • .		1 * .	1 *	1 * .
***** ORGANIC BASE ***	• • • •	•	1 • .		1 •	l * .	
***** ORGANIC OTHER **		•	! • .	•	! • .		! • .
***** VOLATILE ORGANIC	CS ***** *		i • .	.	i • .	! * .	i • .
***** RADIOACTIVITY **	•••• i •	•		İ •	j •	İ •	į •

U = UNDETECTED

N = NOT REPORTED

A = +/- (APPROXIMATE)

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN J = QUANTIFIED BELOW MDL

WELL NO: 3700W5A JED	BURG W-5A						PAGE 3.3
DAT	E SAMPLED OB	/27/87 Y	02/11/87 Y	09/12/86 Y	07/30/86 Y	٧١	, Y
THALLIUM, TOTAL MG/L VANADIUM, TOTAL MG/L ZINC. TOTAL MG/L				:	:	·	•
ZINC, TOTAL MG/L ***** ORGANIC ACIDS **** ***** ORGANIC BASE ****	•				•	•	•
****** ORGANIC OTHER **** ***** VOLATILE ORGANICS ***** RADIOACTIVITY ****	•		•		•		· •

U = UNDETECTED

A = +/- (APPROXIMATE)

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN

DATE SAMPLE	EDI	02/17	/94 Y	1	08/10/93 Y	1	04/15/93 Y	ı	02/23/93 Y	ı	08/28/92 Y	0.3	1/24/92 Y
				• 		·		· ·					
***** CONVENTIONALS *****					•		•		•	•		*	•
CHLORIDE MG/L	Ì	59.	50000	1	62.60000)	•	1	70.00000	l			
YANIDE MG/L	1			ļ		į	•	ļ		ļ			•
ITRATE MG/L	}			1	•	1	•	 <	0.05000	1			
PHENOLS MG/L	- 1			1	•	1		İ		1			
SULFATE MG/L	1	21.	40000	\ <	5.00000	1	•	l	5.60000	1			
EMPERATURE C	Ì	25.	00000	ĺ	20.90000	İ	15.50000	į	22.30000	ĺ	20.30000		14.50000
EMPERATURE C	1			İ		ì		1	15.40000	1	22.00000		•
***** ELEVATIONS/DEPTHS *****	•				•	•						*	
EPTH TO WATER FT	- 1	6.	84000	İ		1		İ	7.25000	ĺ	7.48000		
LEV. GROUND WATER SURFACE FT	Ì			ì	10.71000	ì	7.20000	İ	34.76000	İ	34.53000		
***** INDICATORS *****	*			*		i •		*	•	j *		•	
PH SU	İ	7.	15000	İ	6.75000	1	5.51000	İ	6.03000	İ	6.13000		6.36000
PH SU	j			ĺ		İ	•	İ		İ			
PH. LAB SU	İ			İ		İ	•	Ì	6.15000	İ	6.34000 İ		
PECIFIC CONDUCTANCE UMHOS/CM	į	620.	00000	İ	700.00000	İ	586.00000	İ	719.00000	İ	763.00000	6	42.00000
OC MG/L	i		00000	i	10.80000	İ		i	13.00000	i	5.00000		
***** METALS *****	j *					j *	•						-
***** METALS DISSOLVED *****	j •			•		j •				j •	. i	•	
NTIMONY MG/L	i			i		i		i		i	. i		_
RSENIC MG/L	i	•		i		i		i		i	. i		
ERYLLIUM MG/L	i		j	i		i		i		i	i		
ADMIUM MG/L	i	•	i	í	•	i	•	i	•	i	į.		•
HROMIUM MG/L	i	•	i	i	•	í	•	i	•	i	·		•
OPPER MG/L	i	•		i	•	i	•	i	•	i	· i		•
EAD MG/L	i	•		ł	•	i	•	í	•	i	·		•
ERCURY MG/L	i	•		1	•	i	•	i	•	ł	·		•
ICKEL MG/L	i	•		ł	•	i	•	i	•	i			•
ELENIUM MG/L	- 1	•		l	•	i	•	ł	•	į.	·		•
ILVER MG/L	-		ŀ	ł	•	1	•	1	•	ł			•
HALLIUM MG/L	-	•		{	•	1	•	ł	•	ł	•		•
INC MG/L	1	•		ł	•	1	•	:	•	ł			•
****** METALS TOTAL *****	١	•			•	1 .	•		•	١.	•	_	•
	*	•		. •	•	! *	•		•	٠,		7	•
NTIMONY, TOTAL MG/L	-			ļ .	•	1	•		•	!	. !		•
RSENIC, TOTAL MG/L	ļ	•		ł	•	ļ	•	ļ	•		. !		•
ERYLLIUM, TOTAL MG/L	!			Į .	•	!	•	!		!	. i		
ADMIUM, TOTAL MG/L	ļ			Ī	•	1		•	•	!	:		
HROMIUM, TOTAL MG/1	1			i	•	1				}	'		
OPPER, TOTAL MG/L	- 1		į	ŀ							. !		
EAD, TOTAL MG/L	:		i	1		1		l		ı			

TO SERVICE TO SERVICE

1 - UNDETERMINATE AND DE NO FOR SPECTRA AVAILABLE

- GPEATER INDICATE OF A LEGIS THAT A GUARANT FIEL BLOOK NO.

	501							
DATE SAMPL	EDI	02/24/92 Y		12/04/91 Y	11/04/91 Y	٧	Y	
**** CONVENTIONALS *****	1.	. 1	•		.		. 1	
HLORIDE MG/L	ļ.	9.20000		37.00000		. 1	. 1	•
YANIDE MG/L	- 1	. 1	<	0.01000		. 1	. 1	
ITRATE MG/L	<	0.05000	<	0.05000	. 1	. 1	. 1	
HENOLS MG/L	- 1	. 1	<	0.01000		. 1	. 1	
ULFATE MG/L	<	5.00000		8.32000	. i	. 1	. i	
EMPERATURE C	j	22,10000		22.20000	19.70000	. j	. i	
EMPERATURE C	į.	19.20000		19.80000		<u> </u>	į	·
***** ELEVATIONS/DEPTHS *****	j •				•	. i	i	
EPTH TO WATER FT	i	6.54000		9.54000	10.61000	. i	. i	·
LEV. GROUND WATER SURFACE FT	i	35.47000		32.47000	31.40000	. i	į	•
***** INDICATORS *****	i •]			•	i		•
H SU	i	7.68000		6.64000	6.47000	i	: 1	•
H SU	i	7.00000		6.40000	0.47000	, I	· i	•
H. LAB SU	ì	7.32000		0.4000	•	·		•
PECIFIC CONDUCTANCE UMHOS/CM	j	268.00000		612.00000	604.00000	,	•	•
OC MG/L	i i	2.00000		4.00000	004.0000	•	• •	•
***** METALS *****	- i •	2.00000		4.00000	•	•	•	•
***** METALS DISSOLVED ****		•	•	•		•	• (•
NTIMONY MG/L	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•	<	0.00500	•	•	•	•
RSENIC MG/L	1	•	`	0.00500	•	•	• }	•
_	- {	• !	` `		• {	• {	• {	•
ERYLLIUM MG/L	-	• }		0.01000	•	•	• }	•
ADMIUM MG/L	- 1	• !	<	0.01000	•	•	•	•
HROMIUM MG/L	-	•	<	0.03000	•	• !	• !	•
OPPER MG/L	}	. !	<	0.03000	•	• 1	• !	•
EAD MG/L	ļ	· !	<	0.00500		· !	• !	•
ERCURY MG/L	!	. !	<	0.00050	· !	· !	· !	•
ICKEL MG/L	1	. !	<	0.03000		. !		
ELENIUM MG/L	ļ	. !	<	0.00500		. !	. !	
ILVER MG/L	ļ	. !	<	0.03000	. !		. !	•
HALLIUM MG/L			<	0.00500		· '	. }	
INC MG/L		. [<	0.03000	. !	. !	.	
***** METALS TOTAL ****	*	. 1	*	. 1	*		. 1	•
NTIMONY, TOTAL MG/L	1	. 1	<	0.00500	. •	.		
RSENIC, TOTAL MG/L	1	. 1	•	0.00500	. 1	. 1	. 1	
ERYLLIUM, TOTAL MG/L	1	. İ	<	0.01000	. 1	. 1	. 1	
ADMIUM, TOTAL MG/L	İ	. İ	<	0.01000		. İ		
HROMJUM, TOTAL MG/L	į	. i	<	0.03000		i	. i	
OPPEF, TOTAL MG/L	i	i	4	0.03000	i	į	i	
EAD. TOTAL MOZE				0.00500	·	· i		•

e e oudde en TEC 4 - 4 FROENIMATE) 5 - ROT REPORTED

- GHEATER THAN A SELECT THAT - QUANTIFIED BELOW MAD

T = UNDETERMINATE AND OF NO PER SPECIFA AVAILANTE

WELL NO: 3700W6	JEDBURG W-6						PAGE 2
	DATE SAMPLED!	02/17/94 Y	08/10/93 Y	04/15/93 Y	02/23/93 Y	08/28/92 Y	03/24/92 Y
MERCURY, TOTAL MG/L] .	i .	.	
NICKEL, TOTAL MG/L	j	•	j .	j .	j .	j .	1 .
SELENIUM, TOTAL MG/L	ļ	•					
SILVER, TOTAL MG/L	<u> </u>	•	· .			ļ .	
THALLIUM, TOTAL MG/L	ļ.	•			! -	! ·	! .
ZINC, TOTAL MG/L	į.	•	ļ .	ļ .	! .	ļ ·	
****** ORGANIC ACIDS *		•	ļ * .		ļ •	ļ *	
***** ORGANIC BASE **	•••	•		l * .	[* .	• .	! * .
***** ORGANIC OTHER *	• • • • • • • • • • • • • • • • • • • •	•	1 •	1 •	1 • .) •) *
***** VOLATILE ORGANI	CS ***** *	•	1 * .	1 •	i • .	! • .	• .
***** RADIOACTIVITY *	****		i •	i •	i •	į * .	

U = UNDETECTED

N = NOT REPORTED

A = +/- (APPROXIMATE)

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN

WELL NO: 3700W6	JEDBURG W-6							PAGE 2.1
	DATE SAMPLED	02/24/92	2 v	12/04/91 Y	11/04/91 Y	Y	\	\
MERCURY, TOTAL MG/L				0.00050 1		-	.	,
NICKEL. TOTAL MG/L	j		j <	0.03000			i .	i .
SELENIUM, TOTAL MG/L	j		<	0.00500			j .	
SILVER, TOTAL MG/L	İ		<	0.03000 j		i .	İ .	1 .
THALLIUM, TOTAL MG/L	İ		<	0.00500		j .		1 .
ZINC, TOTAL MG/L	[<	0.03000				
***** ORGANIC ACIDS *		•		.	•			
***** ORGANIC BASE **			•	. 1	• .		1 .	· .
***** ORGANIC OTHER		•			•			
***** VOLATILE ORGANI	CS ***** *	•	 		•			1
***** RADIOACTIVITY			1 •	, i	• .	1 .	1 .	

U = UNDETECTED A = +/- (APPROXIMATE) N = NOT REPORTED

I = UNDETERMINATE AND/OR NO REF. SPECTRA AVAILABLE

> = GREATER THAN < = LESS THAN
J = QUANTIFIED BELOW MDL</pre>

South Carolina Department of Health and Environmental Control

2600 Bull Street Columbia, S.C. 29201

Commissioner Michael D. Jarrett

Roard

Harry M. Hallman, Jr., Chairman Toney Graham, Jr. M.D., Vice-Chairman John B. Pate, M.D., Secretary Oren L. Brady, Jr. Moses H. Clarkson, Jr. Euta M. Colvin, M.D. Henry S. Jordan, M.D.

MEMORANDUM

TO:

John Cresswell, Manager

Site Screening Section

Bureau of Solid and Hazardous Waste Management

FROM:

Judy Canova, Hydrologist

Superfund and Solid Waste Section

Division of Hydrogeology

Bureau of Solid and Hazardous Waste Management

DATE:

December 7, 1988

RE:

Trident North Landfill (BFI - Jedburg)

SCD 980 558 233 Dorchester County

Preliminary Assessment - Hydrogeologic Review

A hydrogeologic review of the referenced site has been conducted to assist in completing a preliminary assessment for the Superfund program. The purpose of the hydrogeologic review is to provide information regarding the ground-water migration route of potential contaminants. It includes information obtained from South Carolina Water Resources Commission well tabulations, available site specific information from state files, a target survey using United States Geological Survey topographic quadrangles, and a literature review.

According to Fark (1985), the following geologic units underlie the site:

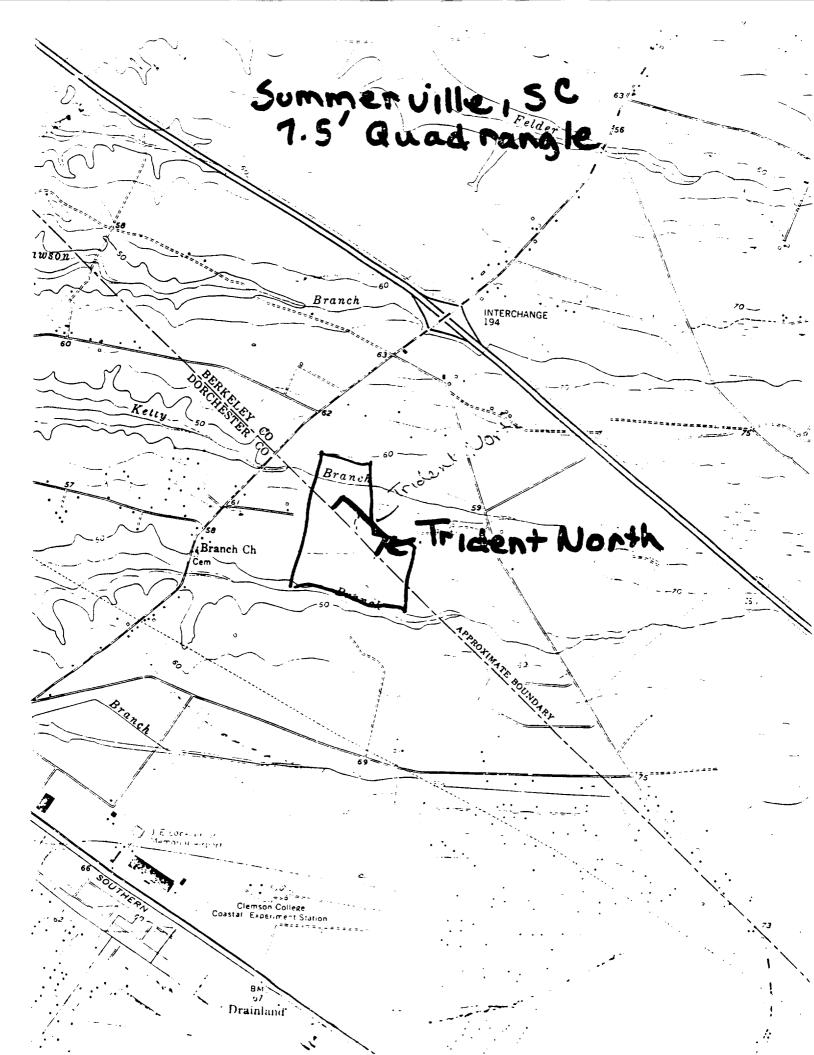
<u>Name</u>	Description	Depth of <u>Occurrence</u>
Shallow Undifferentiated Pleistocene	Heterogeneous mixture of sands silts	Ø to 75 feet
Cooper Group	Fine grained clayey phosphatic limestone interbedded with fine sands	75 to 275 feet

Santee Formation Light colored fossili- 275 to 500 feet ferous limestone

These formations only include those lithologic units at the surface and those extending through possible aquifers of concern. The referenced facility is not in an area of karst topography.

The potential aquifers of concern include the Pleistocene and Santee. The Upper Cooper unit is a laterally extensive deposit of low hydraulic conductivity that likely restricts the vertical migration of ground water (Park, 1985). The aquifer does not appear to be the sole source of potable water in the area.

1986 soil boring logs on site indicate the unsaturated is composed of up to ninety percent sand. Sediments of this composition have an approximate saturated hydraulic conductivity of > 10^{-3} cm/sec. Based on measured water levels in monitoring wells on site, the depth to ground-water is between five and twenty feet. The predominant ground-water flow direction appears to be towards the north and the south in the surficial unconfined aquifer.

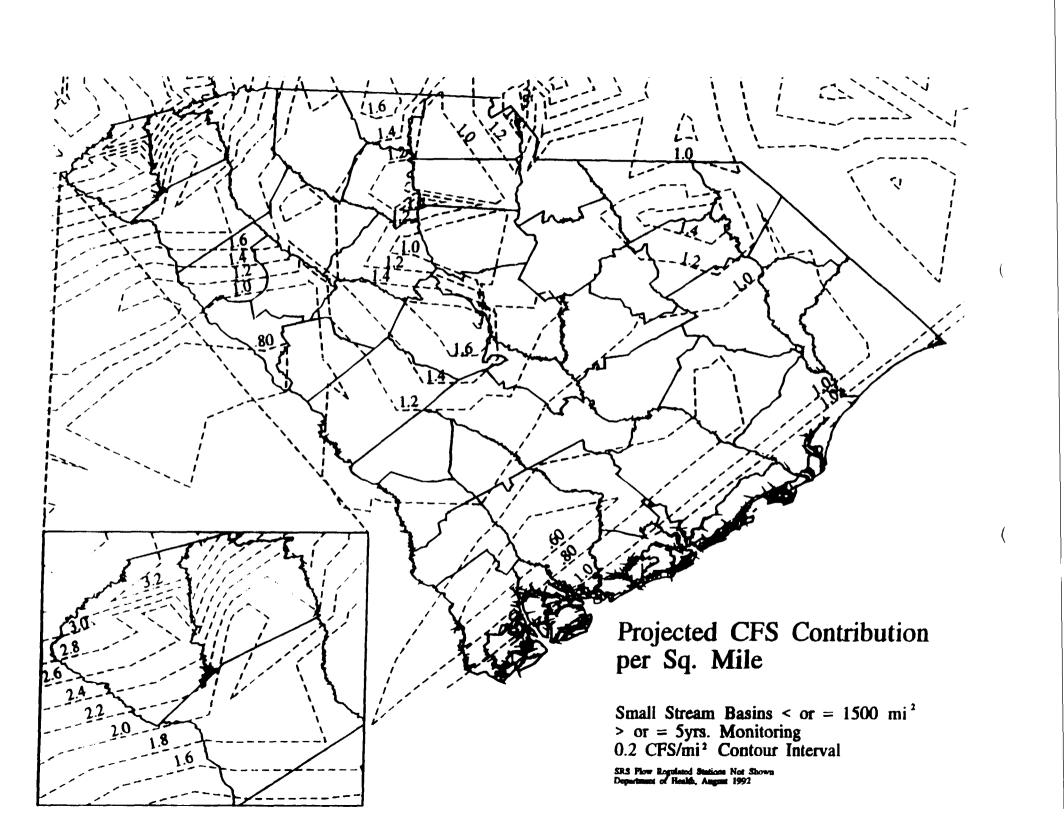

A well inventory within a radius of four miles of the site reveals the following uses of ground-water from the aquifer of concern: domestic and community supply. From available information, it appears that the nearest domestic well developed within the aquifer of concern is 5.24 miles to the east of the site, whereas the nearest community well is 3.03 miles to the north (Wilson's Truck Stop).

The number of homes within a four mile radius of the site not located on a public water supply line (therefore assumed to utilize domestic wells), as identified from topographic quadrangles, are as follows:

Radius	Number of Houses	# Puple
0-1 Mile	28 88	33414 448 4
1-2 Miles	60 118	400,4
2-3 Miles 3-4 Miles	73 108 _195 262	995,6
Total	30T 576 X3.8	- 2188.8

References Cited:

Park, A. D., 1985, The Ground-Water Resources of Charleston, Berkeley, and Dorchester Counties, South Carolina: S.C. Water Resources Commission Report # 139, 146 p.


Contribution		ESTIMATED F	FLOW IN CFS	
Per Mile ²	< 10	10 - 100	100 - 1000	1000 - 10000
0.6	< 16.7	16.7 - 166	166 - 1666	1666 - 16666
0.8	< 12.5	12.5 - 125	125 - 1250	1250 - 12500
1.0	< 10	10 - 100	100 - 1000	1000 - 10000
1.2	< 8.3	8.3 - 83	83 - 833	833 - 8333
1.4	<7.1	7.1 - 71	71 - 710	710 - 7100
1.6	< 6.3	6.3 - 63	63 - 630	630 - 6300
1.8	< 5.6	5.6 - 56	56 - 560	560 - 5600
2.0	< 5.0	5 - 50	50 - 500	500 - 5000
2.2	<4.5	4.5 - 45	45 - 450	450 - 4500
2.4	<4.2	4.2 - 42	42 - 420	420 - 4200
2.6	< 3.9	3.9 - 39	39 - 390	390 - 3900
2.8	< 3.6	3.6 - 36	36 - 360	360 - 3600
3.0	<3.3	3.3 - 33	33 - 330	330 - 3300
3.2	<3.1	3.1 - 31	31 - 310	310 - 3100

Use the attached map to determine which area of the state your site is in. Determine which projected cfs contribution factor you should use (ranges from 0.6 to 3.2). Scan the table to determine which range of flow you are probably within.

Ex. The contribution factor is 1.8. For the flow of a stream to be between 10 and 100, the square miles of drainage area would have to be between 5.6 and 56.

Keep in mind that your four mile radius is approximately 50 square miles, the three mile radius is approximately 28 square miles, the two mile radius is approximately 12.5 square miles, and the one mile radius is approximately 3 square miles. Also, on topo maps that are gridded into square kilometers, multiply the number of square kilometers by 0.3861 to estimate square miles.

If your flow falls near a break point, you may need to be more accurate in measuring the estimated drainage area. This table should be used to determine what flow it is reasonable to assume for your surface water body. For your reports, it is better to give an estimated number rather than just giving the range of flow.

Page No. 1 Date: 01/10/95

S.C. DEPARTMENT OF HEALTH & ENVIRONMENTAL CONTROL BUREAU OF SOLID & HAZARDOUS WASTE

SITE BEING EVALUATED TRIDENT NORTH LANDFILL, 330406.1 LATITUDE 801246.7 LONGITUDE

THE ENDANGERED SPECIES FOUND WITHIN 4 MILES AND BETWEEN LATITUDE 32-57-40 TO 33-05-20 AND LONGITUDE 80-12-40 TO 80-18-00 THIS REPORT IS BASED UPON DATA PROVIDED BY THE S.C. HERITAGE TRUST FOUNDATION (01/92).

COMMON NAME SCIENTIFIC NAME	STATUS	LONGITUDE LATITUDE	DISTANCE FROM SITE	GRANK SRANK	DATE ADDED	TOPO MAP / COUNTY WHERE THE SPECIES IS LOCA	
YELLOW ASPHODEL NARTHECIUM AMERICANUM	NC	80-11-30 33-01-20	3.42 Miles SSE	G2 SH	06/01/22	SUMMERVILLE Dorchester	(
BALD CYPRESS-TUPELO GUM SWAMP	UN	80-13-15 33-06-17	2.55 Miles NNW	G5 S4	/ /	SUMMERVILLE Berkeley	
PINELAND PLANTAIN PLANTAGO SPARSIFLORA	CU	80-11-30 33-01-20	3.42 Miles SSE	G2 S?	05/25/57	SUMMERVILLE Dorchester	
PINELAND PLANTAIN PLANTAGO SPARSIFLORA	CU	80-11-49 33-04-23	0.99 Miles ENE	G2 S?	08/23/85	SUMMERVILLE Berkeley	
SITE RECORD NNAPP	UN	80-13-15 33-06-15	2.51 Miles NNW		/ /	SUMMERVILLE Berkeley	
GREEN-FLY ORCHID EPIDENDRUM CONOPSEUM	UN	80-13-15 33-06-17	2.55 Miles NNW	G3G4 S?	/ /	SUMMERVILLE Berkeley	,
POND PINE WOODLAND	UN	80-10-55 33-03-49	1.84 Miles ESE	G4G5 S3	07/08/76	SUMMERVILLE Berkeley	(
SPRINGS CLEARWEED PILEA FONTANA	UN	80-15-16 32-58-05	0.00 Miles UNK	G5 S?	10/25/57	CLUBHOUSE Dorchester	
EASTERN FEW-FRUIT SEDGE CAREX OLIGOCARPA	UN	80-15-16 32-58-05	0.00 Miles UNK	G4 S?	05/27/57	CLUBHOUSE Dorchester	

GRANK/SRANK - Nature Conservancy rating:

STATUS - Legal status:

TODO MAD /

G1 - Critically imperiled globally because of extreme rarity or because of some factor(s) making it especially vulnerable to extinction.

G2 - Imperiled globally because of rarity or factor(s) making it vulnerable.

FE - Federal Endangered

FT - Federal Threatened

NC - Of Concern, National (plants)

Page No. 2 Date: 01/10/95

S.C. DEPARTMENT OF HEALTH & ENVIRONMENTAL CONTROL

BUREAU OF SOLID & HAZARDOUS WASTE

SITE BEING EVALUATED TRIDENT NORTH LANDFILL, 330406.1 LATITUDE 801246.7 LONGITUDE

THE ENDANGERED SPECIES FOUND WITHIN 4 MILES AND BETWEEN LATITUDE 32-57-40 TO 33-05-20 AND LONGITUDE 80-12-40 TO 80-18-00
THIS REPORT IS BASED UPON DATA PROVIDED BY THE S.C. HERITAGE TRUST FOUNDATION (01/92).

						7 - 7 - 7 - 7
COMMON NAME		LONGITUDE	DISTANCE	GRANK	DATE	COUNTY WHERE THE
SCIENTIFIC NAME	STATUS	LATITUDE	FROM SITE	SRANK	ADDED	SPECIES IS LOCATED

G3 - Either very rare throughout its range or found locally in a restricted range, or having factors making it vulnerable.

RC - Of Concern, Regional (plant

TOPO MAP /

SE - State Endangered (animals)

ST - State Threatened (animals)

SC - Of Concern, State (animals)

SL - Of Concern, State (plants)

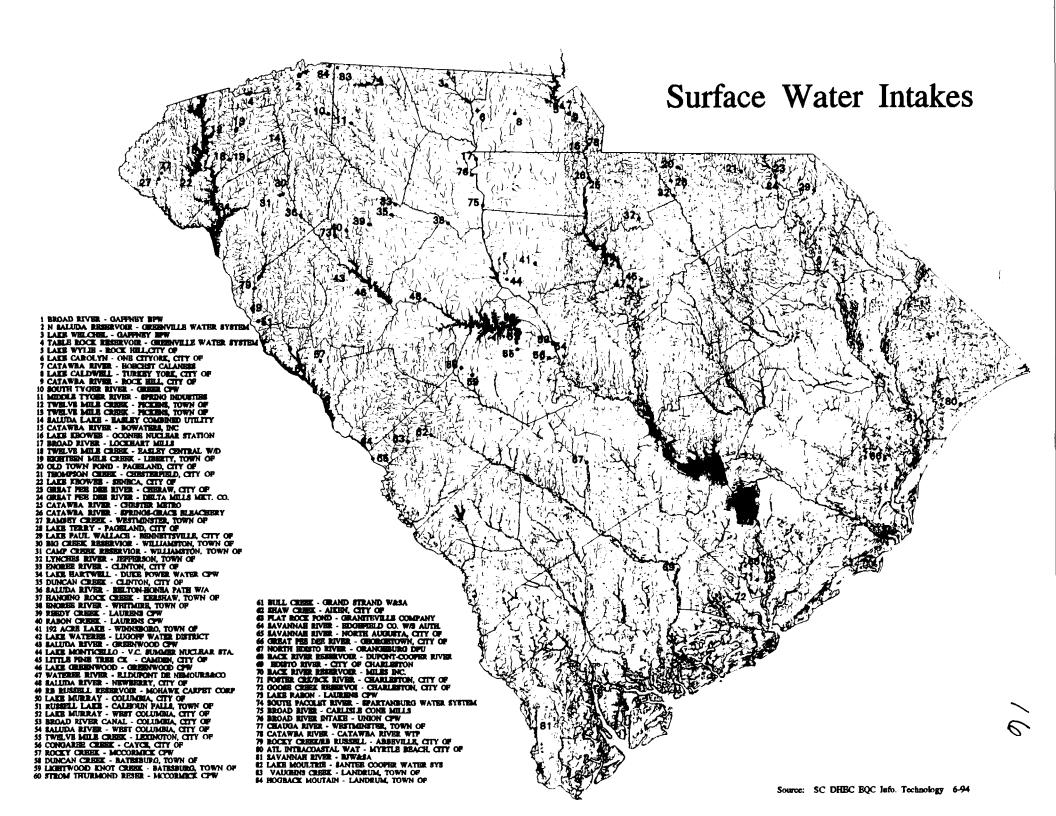
SX - State Extirpated

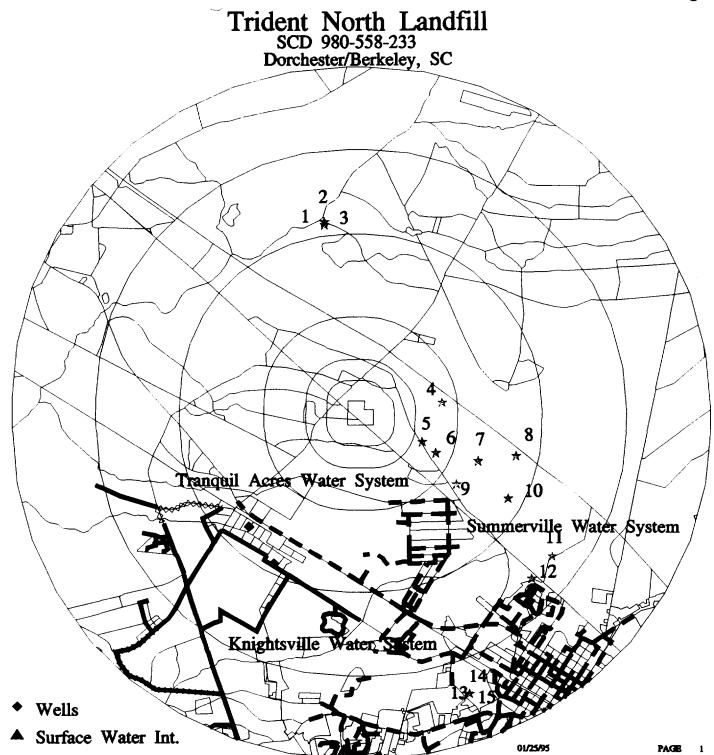
CU - Candidate (Federal review)

UN - Undetermined

G4 - Apparently secure globally, though it may be rare in parts of its range.

G5 - Demonstrably secure globally, though it may be rare in parts of its range.


S1 - Critically imperiled state-wide because of extreme rarity or because of some factor(s) making it especially vulnerable to extirpation.


S2 - Imperiled state-wide because of rarity or factor(s) making it vulnerable.

S3 - Rare or uncommon in state.

S4 - Apparently secure in state.

S5 - Demonstrably secure in state.

Population Estimates Given in Range of Miles:

ropulation r		Given in runge of	MILLOU.
Total Population =	18273	.50 - 1 =	175
3 - 4 =	13601	.2550 =	92
2 - 3 =	3361	025 =	31
1 - 2 =	1013		

Source: SC DHEIC BQC IT

* Endangered Species

- 1 GREEN-FLY ORCHID
 2 BALD CYPRESS-TUPELO GUM SWAMP
 3 SITE RECORD NNAFP
 4 PINELAND PLANTAIN
 5 RED-COCKADED WOODPECKER
 6 RED-COCKADED WOODPECKER
 7 POND PINE WOODLAND
 8 RED-COCKADED WOODPECKER
 9 RED-COCKADED WOODPECKER
 10 RED-COCKADED WOODPECKER
 11 RED-COCKADED WOODPECKER
 12 EASTERN WOODRAT
 13 BASTNERS WIE'S RIGJEABED BAT

- 13 RAFINESQUE'S BIG-EARED BAT 14 PINELAND PLANTAIN 15 YELLOW ASPHODEL

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY ENVIRONMENTAL SERVICES DIVISION REGION IV

COLLEGE STATION RD. ATHENS, GA 30613

MEMORANDUM

DATE: May 6, 1991

SUBJECT: Analytical Data for Trident Landfill DWP-005,

SCD980513014

FROM: Gary Bennett, Chemist Suy, Semett

Laboratory Evaluation and Quality Assurance Section

TO: Deborah A. Vaughn-Wright

Region IV NPL Coordinator

THRU: Wade Knight, Chief

Laboratory Evaluation and Quality Assurance Section

Per the request in your April 18, 1991 memorandum we have provided the information on contract required quantitation limits (CRQLs) and "J" qualifiers for the subject data.

In response to Table 1 in your memo for CRQLs, please refer to Attachment 1, CRQLs for the organic target compound list (TCL), and Attachment 2, CRDLs for the inorganic target analyte list TAL). With regard to Attachment 2, the inorganic statement of work (SOW) does not specify CRDLs for soil/sediment samples as does the organic SOW. However, because of some apparent confusion regarding the lack of inorganic soil/sediment CRDLs for previous cases, I have calculated a set of soil/sediment CRDLs and handwritten them to the side of the water CRDLs. The calculated inorganic soil/sediment CRDLs are based upon an assumed weight and are uncorrected for the percent moisture. Because the weight of sample digested and the percent moisture may vary from sample to sample, the actual CRDLs for inorganic soil/sediment samples will change from sample to sample. The handwritten numbers represent our best attempt at providing a list of "generic" soil/sediment CRDLs.

In Attachment 3 you will find the reasons for all "J" flagged data listed in Table 2 of your memo and the estimated bias for some, but not all, of the "J" data. The reason that bias may not be predicted for some "J" qualified data is related to the quality control parameters themselves. For example, some quality

control procedures such as matrix spikes, calibration verification standards, and surrogate standards are designed to indicate accuracy and may be used to predict bias. Other quality control procedures (matrix duplicates and matrix spike duplicates, serial dilutions, etc.) are designed to indicate precision. In instances where the "J" qualifier is assigned due to a precision parameter, the determinations do not agree well. No estimate of bias is associated with the lack of agreement.

If you have any questions please contact me at FTS 250-3287.

ATTACHMENT

cc: Al Hanke, WMD

TARGET COMPOUND LIST (TCL) AND CONTRACT REQUIRED QUANTITATION LIMITS (CRQL)

. .

			Quanti			
				Low	Med.	On
			Water	<u>Soil</u>	<u>Soil</u>	Column
	Volatiles	CAS Number	ug/L	ug/Kg	ug/Kg	<u>(ng)</u>
l.	Chloromethane	74-87-3	10	10	1200	(50)
2.	Bromomethane	74-83-9	10	10	1200	(50)
3.	Vinyl Chloride	75-01-4	10	10	1200	(50)
4.	Chloroethane	75-00-3	10	. 10	1200	(50)
5.	Methylene Chloride	75-09-2	10	10	1200	(50)
	Acetone	67-64-1	10	10	1200	(50)
	Carbon Disulfide	75-15-0	10	10	1200	(50)
	1,1-Dichloroethene	75-35-4	10	10 ∽	1200	(50)
	1,1-Dichloroethane	75-34-3	10	10	1200	(50)
10.	1,2-Dichloroethene (total)	540-59-0	10	10	1200	(50)
11	Ch lana farm	67 66 2	10	10	1200	(50)
	Chloroform	67-66-3	10			(50)
	1,2-Dichloroethane	107-06-2	10	10	1200	(50)
	2-Butanone	78-93-3	10	10 .	1200	(50)
	1,1,1-Trichloroethane	71-55-6	10	10	1200	(50)
15.	Carbon Tetrachloride	56-23-5	10	10	1200	(50)
16.	Bromodichloromethane	75-27-4	10	10	1200	(50)
	1,2-Dichloropropane	78-87-5	10	10	1200	(50)
	cis-1,3-Dichloropropene	10061-01-5	10	10	1200	(50)
	Trichloroethene	79-01-6	10	10	1200	(50)
	Dibromochloromethane	124-48-1	10	10	1200	(50)
					2000	(30)
21.	1,1,2-Trichloroethane	79-00-5	10	10	1200	(50)
	Benzene	71-43-2	10	10	1200	(50)
23.	trans-1,3-Dichloropropene	10061-02-6	10	10	1200	(50)
	Bromoform	75-25-2	10	10	1200	(50)
25.	4-Methy1-2-pentanone	108-10-1	10	10	1200	(50)
26	2-Hexanone	591-78-6	10	10	1200	(50)
			10	10	1200	(50)
	Tetrachloroethene	127-18-4	10			(50)
	Toluene	108-88-3	10	10	1200	(50)
	1,1,2,2-Tetrachloroethane	79-34-5	10	10	1200	(50)
30.	Chlorobenzene	108-90-7	10	10	1200	(50)
31.	Ethyl Benzene	100-41-4	10	10	1200	(50)
32.		100-42-5	10	10	1200	(50)
33.	Xylenes (Total)	1330-20-7	10	10	1200	(50)

^{*} Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on dry weight basis as required by the contract, will be higher.

		Quanti	tation	Limits*	•
			Low	Med.	On
		Water	Soil	<u>Soil</u>	Column
Semivol atiles	CAS Number	ug/L	ug/Kg	ug/Kg	(ng)
3/ Ph 1	108-95-2	10	220	10000	(20)
34. Phenol		10	330	10000	(20)
35. bis(2-Chloroethyl) ether	111-44-4	10	330	10000	(20)
36. 2-Chlorophenol	95-57-8	10 .	330	10000	(20)
37. 1,3-Dichlorobenzene	541-73-1	10	330	10000	(20)
38. 1,4-Dichlorobenzene	106-46-7	10	330	10000	(20)
39. 1,2-Dichlorobenzene	95-50-1	10	330	10000	(20)
40. 2-Methylphenol	95-48-7	10	330	10000	(20)
41. 2,2'-oxybis					(,
(1-Chloropropane)#	108-60-1	10	330	10000	(20)
42. 4-Methylphenol	106-44-5	10	330	10000	(20)
43. N-Nitroso-di-n-			•••		(20)
dipropylamine	621-64-7	10	330	10000	(20)
44. Hexachloroethane	67-72-1	10	330	10000	(20)
45. Nitrobenzene	98-95-3	10	330	10000	(20)
46. Isophorone	78-59-1	10	330	10000	(20)
47. 2-Nitrophenol	88-75-5	10	330	10000	(20)
48. 2,4-Dimethylphenol	105-67-9	10	330	10000	(20)
, construction	103-07-3	10	330	10000	(20)
49. bis(2-Chloroethoxy)					
methane	111-91-1	10	330	10000	(20)
50 2,4-Dichlorophenol	120-83-2	10	330	10000	(20)
51. 1,2,4-Trichlorobenzene	120-82-1	10	330	10000	(20)
52. Naphthalene	91-20-3	10	330	10000	(20)
53. 4-Chloroaniline	106-47-8	10	330	10000	(20)
54. Hexachlorobutadiene	87-68-3	10	330	10000	(20)
55. 4-Chloro-3-methylphenol	59-50-7	10	330	10000	(20)
56. 2-Methylnaphthalene	91-57-6	10	330	10000	(20)
57. Hexachlorocyclopentadiene	77-47-4	10	330	10000	(20)
58. 2,4,6-Trichlorophenol	88-06-2	10	330	10000	(20)
59. 2,4,5-Trichlorophenol	95-95-4	50	1700	50000	(100)
60. 2-Chloronaphthalene	91-58-7	10	330	10000	(20)
61. 2-Nitroaniline	88-74-4	50	1700	50000	(100)
62. Dimethylphthalate	131-11-3	10	330	10000	(20)
63. Acenaphthylene	208-96-8	10	330	10000	(20)
os. Acenapheny tene	200-70-0	10	330	10000	(20)
64. 2,6-Dinitrotoluene	606-20-2	10	330	10000	(20)
65. 3-Nitroaniline	99-09-2	50	1700	50000	(100)
66. Acenaphthene	83-32-9	10	330	10000	(20)
67. 2,4-Dinitrophenol	51-28-5	50	1700	50000	(100)
68. 4-Nitrophenol	100-02-7	50	1700	50000	(100)

[#] Previously known by the name bis(2-Chloroisopropyl) ether

(continued)	ntinued) . Q					
Semivolatiles	CAS Number	ug/L	Soil ug/Kg	Soil ug/Kg	Column (ng)	
69. Dibenzofuran	132-64-9	10	330	10000	(20)	
70. 2,4-Dinitrotoluene	121-14-2	10	330	10000	(20)	
71. Diethylphthalate	84-66-2	10	330	10000	(20)	
72. 4-Chlorophenyl-phenyl					, , ,	
ether	7005-72-3	10	330	10000	(20)	
73. Fluorene	86-73-7	10 .	330	10000	(20)	
74. 4-Nitroaniline	100-01-6	50	1700	50000	(100)	
75. 4,6-Dinitro-2-methylphenol	534-52-1	50	1700	50000	(100)	
76. N-nitrosodiphenylamine	86-30-6	10	330	10000	(20)	
77. 4-Bromophenyl-phenylether	101-55-3	10	330	10000	(20)	
78. Hexachlorobenzene	118-74-1	10	330	10000	(20)	
79. Pentachlorophenol	87-86-5	50	1700	50000	(100)	٠,
80. Phenanthrene	85-01-8	10	330	10000	(20)	
81. Anthracene	120-12-7	10	330	10000	(20)	
82. Carbazole	86-74-8	10	330	10000	(20)	
83. Di-n-butylphthalate	84-74-2	10	330	10000	(20)	
84. Fluoranthene	206-44-0	10	330	10000	(20)	
85. Pyrene	129-00-0	10	330	10000	(20)	
86. Butylbenzylphthalate	85-68-7	10	330	10000	(20)	
87. 3,3'-Dichlorobenzidine	91-94-1	10	330	10000	(20)	
88. Benzo(a)anthracene	56-55-3	10	330	10000	(20)	
89. Chrysene	218-01-9	10	330	10000	(20)	
90. bis(2-Ethylhexyl)phthalate	117-81-7	10	330	10000	(20)	
91. Di-n-octylphthalate	117-84-0	10	330	10000	(20)	
92. Benzo(b)fluoranthene	205-99-2	10	330	10000	(20)	
93. Benzo(k)fluoranthene	207-08-9	10	330	10000	(20)	
94. Benzo(a)pyrene	50-32-8	10	330	10000	(20)	
95. Indeno(1,2,3-cd)pyrene	193-39-5	10	330	10000	(20)	
96. Dibenz(a,h)anthracene	53-70-3	10	330	10000	(20)	
97. Benzo(g,h,i)perylene	191-24-2	10	330	10000	(20)	

^{*} Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on dry weight basis as required by the contract, will be higher.

TARGET COMPOUND LIST (TCL) AND CONTRACT REQUIRED QUANTITATION LIMITS (CRQL)

			Quantitation Limits*			
Pesticides/Aroclors	CAS Number	<u>Water</u> ug/L		On Column (pg)		
103010,1007,1100	OHO (GHOOT		VS/11S			
98. alpha-BHC	319-84-6	0.05	1.7	5		
99. beta-BHC	319-85-7	0.05	1.7	5		
100. delta-BHC	319-86-8	0.05	1.7	5		
101. gamma-BHC (Lindane)	58-89-9	0.05	1.7	5		
102. Heptachlor	76-44-8		. 1.7	5		
103. Aldrin	309-00-2	0.05	1.7	5		
104. Heptachlor epoxide	1024-57-3	0.05	1.7	5		
105. Endosulfan I	959-98-8	0.05	1.7	5		
106. Dieldrin	60-57-1	0.10	3.3	10		
107. 4,4'-DDE	72-55-9	0.10	3.3	10		
108. Endrin	72-20-8	0.10	3.3	_ 10		
109. Endosulfan II	33213-65-9	0.10	3.3	10		
110. 4,4'-DDD	72-54-8	0.10	3.3	10		
lll. Endosulfan sulfate	1031-07-8	0.10	3.3 .	10		
112. 4,4'-DDT	50-29-3	0.10	3.3	10		
113. Methoxychlor	72-43-5	0.50	17.0	50		
114. Endrin ketone	53494-70-5	0.10	3.3	10		
115. Endrin aldehyde	7421-36-3	0.10	3.3	10		
116. alpha Chlordane	5103-71-9	0.05	1.7	5		
117. gamma-Chlordane	5103-74-2	0.05	1.7	5		
118. Toxaphene	8001-35-2	5.0	170.0	500		
119. Aroclor-1016	12674-11-2	1.0	33.0	100		
120. Aroclor-1221	11104-28-2		33.0	100		
121. Aroclor-1232	11141-16-5		67.0	200		
122. Aroclor-1242	53469-21-9	1.0	33.0	100		
123. Aroclor-1248	12672-29-6			100		
124. Aroclor-1254	11097-69-1	1.0	33.0	100		
125. Aroclor-1260	11096-82-5	1.0	33.0	100		

^{*} Quantitation limits listed for soil/sediment are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on dry weight basis as required by the contract, will be higher.

There is no differentiation between the preparation of low and medium soil samples in this method for the analysis of Pesticides/Aroclors.

INORGANIC TARGET ANALYTE LIST (TAL)

. .

	Contract Required Detection Limit	l (1,2)
Analyte	(ug/L)	Soil (mg/k
Aluminum	200	40
Antimony	60	12
Arsenic	10	2
Barium	200	:40
Beryllium		
Cadmium	5	1
Calcium	5000	1000
Chromium	10	2.
Cobalt	50	10
Copper	25	5
Iron	100	20
Lead	3	0.6
Magnesium	5000	1000
Manganese	15	3
Mercury	0.2	0.10
Nickel	40	8
Potassium	5000	. 1000
Selenium	<u></u> 5	1
Silver	10	2
Sodium	5000	1000
Thallium	10	
Vanadium	50	10
Zinc	20	4
Cyanide	10	0.5

(1) Subject to the restrictions specified in the first page of Part G, Section IV of Exhibit D (Alternate Methods - Catastrophic Failure) any analytical method specified in SOW Exhibit D may be utilized as long as the documented instrument or method detection limits meet the Contract Required Detection Limit (CRDL) requirements. Higher detection limits may only be used in the following circumstance:

If the sample concentration exceeds five times the detection limit of the instrument or method in use, the value may be reported even though the instrument or method detection limit may not equal the Contract Required Detection Limit. This is illustrated in the example below:

For lead:

Method in use - ICP Instrument Detection Limit (IDL) - 40 Sample concentration - 220 Contract Required Detection Limit (CRDL) - 3

ATTACHMENT 3

TRIDENT LANDFILL - CASE 12393 INFORMATION ON "J" DATA

Sample	Analyte	Reason for Qualifier	Predicted Bias
All soils/ sediments	lead	Matrix spike recov = 38.6% Matrix spike dup = 50.7	Low Unknown
TW-01	toluene	No flag on this sample	
TW -02	toluene	Below min quan. limit (MQL)	Unknown
SS-01, 02	toluene	Int. standard recovery low	Low
SS-08, 11	Benzo b/k fluoranthene	Below MQL	Unknown
SS-10, SB-08 SW-04	PCP	Below MQL	Unknown
SB-03	vinyl chloride toluene	Int. standard recov. low	Low
SB-10,11,	naphthalene aldrin PCP	Below MQL	Unknown
SD-01	toluene	Int. standard recov. low	Low
SD-02	toluene	Below MQL	Unknown
SD-09	toluene	Surrogate standard low	Low

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IV

345 COURTLAND STREET, N.E. ATLANTA, GEORGIA 30365

4WD-WPB

MEMORANDUM

DATE: APR 1 8 1991

SUBJECT: Analytical Data for Trident Landfill DWP-005

SCD980513014

FROM: Deborah A. Vaughn-Wright

Region IV NPL Coordinator

THRU: Al Hanke, Chief

Site Assessment Section

TO: Wade Knight, Chief

Laboratory Evaluation and Quality Assurance Section

During the Quality Assurance Review of the Hazard Ranking System (HRS) score package for the above referenced site, several questions arose regarding the use of 'J' data. Further information is requested for the 'J' values, bias indicators wherever available and in some cases, contract required detection limits.

Attached are tables which detail specific samples and analyses of concern, and the type of information needed for each. Analytical data sheets are also attached.

If you have any questions, please contact me at FTS 257-5065 or Katherine Siders, Region IV FIT, at (404) 938-7710.

Attachments

UNITED STATES ENVIRONMENTAL PROTECTION ENVIRONMENTAL SERVICES DIVISION

REGION IV COLLEGE STATION RD. ATHENS, GA 30613

MEMORANDUM

DATE:

May 6, 1991

SUBJECT: Analytical Data for Trident Landfill DWP-005,

SCD980513014

FROM:

Gary Bennett, Chemist Suy Gennett

Laboratory Evaluation and Quality Assurance Section

TO:

Deborah A. Vaughn-Wright Region IV NPL Coordinator

THRU:

Wade Knight, Chief Laboratory Evaluation and Quality Assurance Section

Per the request in your April 18, 1991 memorandum we have provided the information on contract required quantitation limits (CRQLs) and "J" qualifiers for the subject data.

In response to Table 1 in your memo for CRQLs, please refer to Attachment 1, CRQLs for the organic target compound list (TCL), and Attachment 2, CRDLs for the inorganic target analyte list TAL). With regard to Attachment 2, the inorganic statement of work (SOW) does not specify CRDLs for soil/sediment samples as does the organic SOW. However, because of some apparent confusion regarding the lack of inorganic soil/sediment CRDLs for previous cases, I have calculated a set of soil/sediment CRDLs and handwritten them to the side of the water CRDLs. The calculated inorganic soil/sediment CRDLs are based upon an assumed weight and are uncorrected for the percent moisture. Because the weight of sample digested and the percent moisture may vary from sample to sample, the actual CRDLs for inorganic soil/sediment samples will change from sample to sample. The handwritten numbers represent our best attempt at providing a list of "generic" soil/sediment CRDLs.

In Attachment 3 you will find the reasons for all "J" flagged data listed in Table 2 of your memo and the estimated bias for some, but not all, of the "J" data. The reason that bias may not be predicted for some "J" qualified data is related to the quality control parameters themselves. For example, some quality control procedures such as matrix spikes, calibration verification standards, and surrogate standards are designed to indicate accuracy and may be used to predict bias. Other quality control procedures (matrix duplicates and matrix spike duplicates, serial dilutions, etc.) are designed to indicate precision. In instances where the "J" qualifier is assigned due to a precision parameter, the determinations do not agree well. No estimate of bias is associated with the lack of agreement.

If you have any questions please contact me at FTS 250-3287.

ATTACHMENT

cc: Al Hanke, WMD

SITE TRIDENT NORT PROJECT # 90-804	HLF	(FIT)	5	TATE SC		ROGER FRANKLIN 09/17/90	(NUS)
SOILVOA BOOKED	11	DATA	RECEIVED	/ /	FOR	SAMPLES	
H2OVOA BOOKED	7	DATA	RECEIVED	/ /	FOR	SAMPLES	
SOILEXT BOOKED	10	DATA	RECEIVED	/ /	FOR	SAMPLES	
H20EXT BOOKED	7	DATA	RECEIVED	/ /	FOR	SAMPLES	
SOILPEST BOOKED	10	DATA	RECEIVED	/ /	FOR	SAMPLES	
H2OPEST BOOKED	7	DATA	RECEIVED	/ /	FOR	SAMPLES	
SOILMET BOOKED	10	DATA	RECEIVED	11/13/90	FOR 15	SAMPLES	
H20MET BOOKED	7	DATA	RECEIVED	11/13/90	FOR 7	SAMPLES	
SOILCN BOOKED	10	DATA	RECEIVED	11/13/90	FOR 15	SAMPLES	
H2OCN BOOKED	7	DATA	RECEIVED	11/13/90	FOR 7	SAMPLES	
SOILOTH1 BOOKED	0	DATA	RECEIVED	/ /	FOR	SAMPLES	
SOILOTH2 BOOKED	· 0	DATA	RECEIVED	/ /	FOR	SAMPLES	
H2OOTH1 BOOKED	O	DATA	RECEIVED	/ /	FOR	SAMPLES	
H2OOTH2 BOOKED	O	DATA	RECEIVED	1 /	FOR	SAMPLES	
OTHER1 BOOKED	O	DATA	RECEIVED	7 /	FOR	SAMPLES	
OTHER2 BOOKED	O	DATA	RECEIVED	/ /	FOR	SAMPLES	
OV REQUESTED? N							

LAB(CLP/ESD) CLP

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region IV Environmental Services Division College Station Road, Athens, Ga. 30613

*****MEMORANDUM****

DATE: 11/06/90

SUBJECT:

Results of Metals Analysis; 90-804 TRIDENT N. LANDFILL JEDBERG SC CASE NO: 14888

FROM: Robert W. Knight

Chief, Laboratory Evaluation/Quality Assurance Section

TO: PHIL BLACKWELL

Attached are the results of analysis of samples collected as part of the subject project.

As a result of the Quality Assurance Review, certain data qualifiers may have been placed on the data. Attached is a DATA QUALIFIER REPORT which explains the reasons that these qualifiers were required.

If you have any questions please contact me.

ATTACHMENT

INORGANIC DATA QUALIFIERS REPORT

Case Number: 14888
Project Number: 90-804
Site: Trident N. Landfill, Jedberg, SC

	Element		Flag	Samples_Affected	Reason	_		
<u>Water</u>		Be,	Mn,	Se,	U	All positives >IDL but <crdl< td=""><td>Baseline instability</td><td></td></crdl<>	Baseline instability	
			Ca, Na,		U	All positives)IDL but <10X contaminant level	Positives in Blanks	
		Н	g		J	A11	Matrix spike recovery =	74%
		S	е		J	A11	Matrix spike recovery =	72.1%
		T	1.		J	A11	Matrix spike recovery =	73.3%
		Zı	n		J	A11	Matrix duplicate RPD =	57.8%
		В	a		J	A11	Serial dilution percent difference = 11.6%	
<u>Soil</u>								
	As, V	Be,	Mn,	Se,	U	All positives >IDL but <crdl< td=""><td>Baseline instability</td><td></td></crdl<>	Baseline instability	
			Ca, Na,		U	All positives)IDL but <10X contaminant level	Positives in Blanks	
		SI	b		J R	All positives All negatives	Matrix spike recovery =	15.3%
		A	S		J R	All positives All negatives	Matrix spike recovery =	-9.3%
		Cı	ı		J	A11	Matrix duplicate RPD =	54.7%
		S	е		J R	All positives All negatives	Matrix spike recovery = - Matrix duplicate RPD =	90.5% 82.7%
		V			J	A11		73.7% 67.5%
		F	е		J	A11	Matrix duplicate RPD =	36.1%
		Ca	a		J	A11	Serial dilution percent difference = 40.4%	

11/05/90

METALS DATA REPORT		
*** * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
** PROJECT NO. 90-80		NSF COLLECTED BY: M COHEN **
** SOURCE: TRIDENT N	N. LANDFILL CITY: JEDE	BERG ST: SC **
** STATION ID: PB-01	COLLECTION	START: 09/17/90 0740 STOP: 00/00/00 **
** CASE NUMBER: 1488	SAS NUMBER: MD NUMBER	R: X737 **
**		**
*** * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
UG/L	ANALYTICAL RESULTS UG/L	ANALYTICAL RESULTS
120U ALUMINUM		GANESE
24U ANTIMONY 2U ARSENIC 2UJ BARIUM	O. 20UJ MERC	
2U ARSENIC	6U NICK	
2UJ BARIUM		ASSIUM
1U BERYLLIUM 3U CADMIUM	auj Sere	NIUM
3U CADMIUM 170U CALCIUM	SU SILV 500 SODI	
	50U SODI	
6U CHROMIUM 4U COBALT	SUJ THÂL NA TIN	LIUM
4U COBALT 3U COPPER	NA 11N	ADIUM
110U IRON	NA TIN 3U VANA 9UJ ZINC	
10 LEAD	900 21100	•
30U MAGNESIUM		
OCC WYGHESTOW		

REMARKS

REMARKS

FOOTNOTES

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90 METAL C DATA DEDORT

METALS DATA REPORT **	LANDFILL	CITY	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
*** * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	• • • • • • • • • • •

REMARKS

REMARKS

FOOTNOTES

*FOUNDLES***
*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90 METALC DATA DEDOOT

METALS DA	IA REPORT								
*** * * *	* * * * * * *	* * * * *	* * * * *	* * * *	* * *	* * * *	* * * *		* * * * * * * * * * * * * * * * * * * *
	ECT NO. 90-804		NO. 50187	SAMPLE	TYPE:	GROUNDWA		ELEM: NSF	COLLECTED BY: M_COHEN **
** SOUR(CE: TRIDENT N.	LANDFILL					CITY	: JEDBERG	ST: SC **
** STAT	ION ID: MW-02						COLL	ECTION START	T: 09/18/90 1120 STOP: 00/00/00 **
** CASE	NUMBER: 14888	9	SAS NUMBER	•			MD	NUMBER: X753	**
**									**
*** * * *	* * * * * * *	* * * * *	* * * * *	* * * *	* * *	* * * *	* * * *	* * * * * *	* * * * * * * * * * * * * * * * * * * *
UG/L		ANALYTICAL	RESULTS				UG/L		ANALYTICAL RESULTS
3300 24U 2U 82J 1U 3U 83000	ALUMINUM						83	MANGANESE	
2411	ANTIMONY						0.20UJ	MERCURY	
211	ARSENIC						70	NICKEL	
ŘŽ.I	BARIUM						1800	POTASSIUM	
111	BERYLLIUM						ອ້ນັ້ນ	SELENIUM	
ล่มั	CADMIUM						50	SILVER	
83000	CALCIUM						19000	SODIUM	
10	CHROMIUM						301	THALLIUM	
KII	COBALT						NA	TIN	
19 50 30	COPPER						200	VANADIUM	
3700	IRON						50UJ	ZINC	
							2000	ZINC	
8	LEAD								

REMARKS

FOOTNOTES

7700

MAGNESIUM

REMARKS

^{*}A-AVERAGE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90 METALC DATA DEDORT

METALS DA	ATA REPORT								
*** * * :	* * * * * * * *	* * * * *	* * * * *	* * * *	* * *	* * * *	* * * *	* * * * * * *	· * * * * * * * * * * * * * * * * * * *
** PRO			NO. 50188	SAMPLE	TYPE:	GROUNDW			COLLECTED BY: M_COHEN **
	RCE: TRIDENT N.	LANDFILL						Y: JEDBERG	ST: SC **
** STA	TION ID: MW-03						COL	LECTION START:	
	E NUMBER: 14888		SAS NUMBER:				MD	NUMBER: X754	**
**									**
*** * * 1		* * * * *	* * * * *	* * * *	* * *	* * * *	* * * *	* * * * * * *	
UG/L		ANALYTICAL	RESULTS				_UG/L		ANALYTICAL RESULTS
4000	ALUMINUM						150	MANGANESE	
24U 2U	ANTIMONY						0.20UJ	MERCURY	
20	ARSENIC						8U	NICKEL	
120J	BARIUM						3700	POTASSIUM	
10	BERYLLIUM						<u> 3</u> บป	SELENIUM	
30	CADMIUM						5U	SILVER	
140000	CALCIUM						38000	SODIUM	
22	CHROMIUM						307	THALLIUM	
50	COBALT						NA.	TIN	
22 50 30 4700	COPPER						300	VANADIUM	
<u>4</u> 700	IRON						50UJ	ZINC	
5	LEAD								
10000	MAGNESIUM								

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

SAMPLE AND ANALYSIS MANAGEMENT SYSTEM

METALC DA	TA DEDORT		EPA-REGION IV ESD, ATH	IENS, GA.	11/05/90
METALS DA	1A REPURI				
** PROJ		SAMPLE NO. 50189 SAMPL	E TYPE: GROUNDWA PROG	ELEM: NSF COLLECTED BY: M C	OHEN **
** SOUR ** STAT	CE: TRIDENT N. ION ID: MW-04	LANDFILL	COLL	: JEDBERG ST: SC ECTION START: 09/18/90 1435	STOP: 00/00/00 **
** CASE	NUMBER: 14888	SAS NUMBER:	MD	NUMBER: X755	**
*** * * *	* * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * * * *	
UG/L	A1 1188711118	ANALYTICAL RESULTS	_UG/L	ANALYTICAL RESUL	TS
1000 240 20	ALUMINUM ANTIMONY		150 0,200J	MANGANESE MERCURY	
2ีบี ั	ARSENIC		6U	NĪCKĒL	
140J	BARIUM		2200	POTASSIUM	
311	BERYLLIUM CADMIUM		3UJ 5U	SELENIUM SILVER	
53000	CALCIUM		35000	SODIUM	
6U	CHROMIUM		<u> </u>	ŢĦĄLLIUM	
40 30	COBALT COPPER		NA 50	TIN VANADIUM	
2900	IRON		40ับJ	ZINC	
140J 1U 3U 53000 6U 4U 3U 2900	LEAD				
8000	MAGNESIUM				

REMARKS ***REMARKS***

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90

META	LS DATA REPORT				
***	* * * * * * * * * *				* * * * * * * * * * * * * * * * * * * *
**	PROJECT NO. 90-804				BY: M_COHEN **
**		LANDFILL	CITY:	JEDBERG	ST: SC **
**	STATION ID: PW-01		COLLE	CTION START: 09/18/90	0920 STOP: 00/00/00 **
**	CASE NUMBER: 14888	SAS NUMBER:	MD N	IUMBER: X751	**
**					**
***	* * * * * * * * * *		* * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
	UG/L	ANALYTICAL RESULTS	UG/L	ANALYTICA	L RESULTS
26U 24U 2U 2UJ 1U 3U 2500	ALUMINUM		2U .	MANGANESE	
24Ú	ANTIMONY		Ō. 20UJ	MERCURY	
20	ARSENIC		6U	NICKEL	
2มัป	BARIUM		6700	POTASSIUM	
1Ü	BERYLLIUM		150J	SELENIUM	
ЗŬ	CADMIUM		50	SILVER	
2500	CALCIUM		150000	SÖDÍÚM	
6Ŭ	CHROMIUM		150J	THALLIUM	
5ŭ	COBALT			TIN	
60 50 50 500	COPPER		NA 3U 50UJ	VANADIUM	
รีกับ	IRON		50ILI	ZINC	

REMARKS ***REMARKS***

FOOTNOTES

LEAD

MAGNESIUM

1300

^{*}FOUTNUTES***

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90 METALS DATA REPORT

** SOUR ** STAT	* * * * * * * * * * * * * * * * * * *	LANDFILL	* * * * * * * NO. 50191		* * * * TYPE: GR	* * * * * * * * * * * * * * * * * * *	PROG ELEM CITY: JEI COLLECTIO MD NUMBE	DBERG		ST: SC 1010 STOP:	00/00/00	* * * * *** ** ** ** **
*** * * * * * * UG/L 40U 24U 2U 2U 3U 4100 6U 4U 190U 117 2800	ALUMINUM ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM CALCIUM CHROMIUM COBALT COPPER IRON LEAD MAGNESIUM	* * * * * * ANALŸTICAL	* * * * * * * * * * * * * * * * * * *	* * * *	* * * *	20 0.2 60 880 30 50	200J MER NIC DO POT J SEL DOOO SOI JJ THA VAN	MUIDA	* * * * * ANALYTICAL		* * * * *	* * * * ***

REMARKS ***REMARKS***

FOOTNOTES

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90 METALC DATA DEDORT

### ### ### ### ######################	LANDFILL	PROG ELEM: NSF CITY: JEDBERG COLLECTION START MD NUMBER: X740	COLLECTED BY: M COHEN ** ST: SC ** T: 09/17/90 1100 STOP: 00/00/00 ** **
*** * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	# * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *

REMARKS ***REMARKS***

FOOTNOTES

4.8

LEAD MAGNESIUM

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90 METALS DATA REPORT

*** * * * * * * * * * * * * * * * * *	LANDFILL	PROG ELEM: NSF COCITY: JEDBERG COLLECTION START: COMD NUMBER: X749	* * * * * * * * * * * * * * * * * * *
*** * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	ANALYTICAL RESULTS

REMARKS

REMARKS

FOOTNOTES

^{*}FOUNDIES***

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90

METALS DATA REPORT		
*** * * * * * * * * * *		* * * * * * * * * * * * * * * * * * * *
** PROJECT NO. 90-804		PROG ELEM: NSF COLLECTED BY: M COHEN **
** SOURCE: TRIDENT N.	LANDFILL	CITY: JEDBERG ST: SC **
** STATION ID: SS-03		COLLECTION START: 09/18/90 1200 STOP: 00/00/00 **
** CASE NUMBER: 14888	S SAS NUMBER:	MD NUMBER: X756 **
**		**
*** * * * * * * * * * *		* * * * * * * * * * * * * * * * * * * *
MG/KG	ANALYTICAL RESULTS	MG/KG ANALYTICAL RESULTS
7500 ALUMINUM		7.6 MANGANESE
5.1UR ANTIMONY		O.10U MERCURY
2.4J ARSENIC		3U NICKEL
23 BARIUM		270 POTASSIUM
O.21U BERYLLIUM		O.6OUR SELENIUM
O.64U CADMIUM		1.1U SILVER
780J CALCIUM		110U SODIUM
15 CHROMIUM		O.4OU THALLIUM
2U COBALT		NA TIN
15 CHROMIUM 2U COBALT 2UJ COPPER		NA TIN 22J VANADIUM 5.2 ZINC
14000J IRON		5.2 ZINC
11 LEAD		10 PERCENT MOISTURE
380 MAGNESIUM		

REMARKS

FOOTNOTES

REMARKS

^{*}FOOTNOTES***
*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90 METALC DATA DEDORT

** * * * * * * * * * * * * * * * * * *	LANDFILL	CITY	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
*** * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *

REMARKS ***REMARKS***

FOOTNOTES

LEAD MAGNESIUM

230

*FOUNDIES***
*A-AUTERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90 METALC DATA DECORT

METALS DATA REPORT *** * * * * * * * * * ** PROJECT NO. 90-80 ** SOURCE: TRIDENT N ** STATION ID: SS-05 ** CASE NUMBER: 1488	. LANDFILL	* * * * * * * * * * * * * * * * * * *
**	* * * * * * * * * * * * * * * * * * *	MG/KG ANALYTICAL RESULTS 4.1 MANGANESE 0.11U MERCURY 2U NICKEL 230 POTASSIUM 0.61UR SELENIUM 1.1U SILVER 30U SODIUM 0.40U THALLIUM NA TIN 25J VANADIUM 5U ZINC 09 PERCENT MOISTURE

REMARKS ***REMARKS***

FOOTNOTES

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90 METALC DATA DEDODT

** PROJECT NO. 90-804 SAMPLE NO. 50200 SAMPLE TYPE: SOIL ** SOURCE: TRIDENT N. LANDFILL ** STATION ID: SB-01 ** CASE NUMBER: 14888 SAS NUMBER: ** PROJECT NO. 90-804 SAMPLE NO. 50200 SAMPLE TYPE: SOIL ** COLLECTED BY: M COHEN CITY: JEDBERG COLLECTION START: 09/17/90 1125 STOP: 00/00/00 MD NUMBER: X741	**
** SOURCE: TRIDENT N. LANDFILL CITY: JEDBERG ST: SC ** STATION ID: SB-01 COLLECTION START: 09/17/90 1125 STOP: 00/00/00 ** CASE NUMBER: 14888 SAS NUMBER: MD NUMBER: X741	
** STATION ID: SB-01 COLLECTION START: 09/17/90 1125 STOP: 00/00/00 ** CASE NUMBER: 14888 SAS NUMBER: MD NUMBER: X741	
** ČASE NUMBER: 14888 SAS NUMBER: MD NUMBER: X741	**
**************************************	**
	**
**	* *
. *** * * * * * * * * * * * * * * * * *	***
MG/KG ANALYTICAL RESULTS MG/KG ANALYTICAL RESULTS	
14000 ALUMINUM 39 MANGANESE	
5.9ŬŘ AŇŤÍMONY O.12U MERČURÝ	
3UJ ARSENIC 9U NICKEL	
41 BARIUM 1400 POTASSIUM	
1U BERYLLIUM 0.79UR SELENIUM	
0.73U CADMIUM 1.2U SILVER	
140ÔĴ ĈAĽCĨŮM 90U SODIUM	
18 CHROMIUM 0.53U THALLIUM	
5.4 COBALT NA TIN	
9UJ COPPER 3OJ VANADIUM	
22000J ÎRON 34 ZINC	
9ÚÚ COPPER 3ÓJ VÁNADIUM 22000J IRON 34 ZINC 9.9 LEAD 25 PERCENT MOISTURE	
1900 MAGNESIUM	

REMARKS ***REMARKS***

^{***}FOOTNOTES***
*A-AVERAGE VALUE *A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90

METALS DATA REPORT *** * * * * * * * * * ** PROJECT NO. 90-804 ** SOURCE: TRIDENT N. ** STATION ID: SB-02 ** CASE NUMBER: 14888	LANDFILL	CITY COLL	* * * * * * * * * * * * * * * * * * *	
*** * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	MG/KG 13 0.10U 210 210 0.72UR 1.1U 90U 0.48U NA 23J 7U 20	* * * * * * * * * * * * * * * * * * *	

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90 METAL & DATA DECORA

METALS DA	ATA REPORT						
*** * * *	. * * * * * * *	* * * * * * * * *		* * * * * * *	* * * * * * * * * * *		* * * * ***
** PROJ	IECT NO. 90-804	SAMPLE NO. 5020	2 SAMPLE TYPE: SO	IL PROG	ELEM: NSF COLLECTE	D BY: M COHEN	**
** SOUR	CE: TRIDENT N.	LANDFILL		CITY	: JEDBERG	ST: SC	**
** STAT	ION ID: SB-03			COLL	ECTION START: 09/18/9		**
	NUMBER: 14888	SAS NUMBE	R:	MD	NUMBER: X866		**
**							**
*** * * *	* * * * * * *	* * * * * * * * *					* * * * ***
MG/KG	1	ANALYTICAL RESULTS		MG/KG	ANALYTI	CAL RESULTS	
2200	ALUMINUM			20	MANGANESE		
5.50R	ANTIMONY			Õ. 10U	MERCURY		
2UJ	ARSENIC			1.40	NICKEL		
11	BARIUM			44	POTASSIUM		
1Ú	BERYLLIUM			0.62UR	SELENIUM		
0.690	CADMIUM			1.20	SILVER		
880J	CALCIUM			60Ū	SODIUM		
3.3	CHROMIUM			0.42U	THALLIUM		
0.92U	COBALT			NA	TIN		
0.92U 0.69UJ	COPPER			20UJ	VANADIUM		
5300J	IRON			20	ZINC		
4.7	LEAD			16	PERCENT MOISTURE		
120	MAGNESIUM			. •			

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE *ALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90 METALS DATA DEDORT

METALS DATA REPORT		
*** * * * * * * * * *		* * * * * * * * * * * * * * * * * * * *
** PROJECT NO. 90-80	O4 SAMPLE NO. 50203 SAMPLE TYPE: SOIL	PROG ELEM: NSF COLLECTED BY: M COHEN **
** SOURCE: TRIDENT N	N. LANDFILL	CITY: JEDBERG ST: SC **
** STATION ID: SB-04		COLLECTION START: 09/17/90 1035 STOP: 00/00/00 **
** CASE NUMBER: 1488		MD_NUMBER: X739 **
**	50 5715 175MBE111	**
*** * * * * * * * * *		
MG/KG	ANALYTICAL RESULTS	MG/KG ANALYTICAL RESULTS
2100 ALUMINUM	31	MANGANESE
5.2UR ANTIMONY		11U MERCURY
0.45UR ARSENIC		ĠŮ ŇĪĊĶĔĹ
9U BARIUM	14	
0.22U BERYLLIUM		67UR SELENIÚM
0.65U CADMIUM		10 SILVER
230UJ CALCIUM	4ċ	
2.6 CHROMIUM		45U THALLIUM
0.86U COBALT	ŇÁ	
4UJ COPPER	50	J VANADIUM
1500J IRON	60	ZINC
3.6 LEAD	19	PERCENT MOISTURE
	18	PERCENT WOISTORE
130 MAGNESIUM		

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

**

**

**

**

11/05/90 METALS DATA REPORT

PROG ELEM: NSF COLLECTED BY: M COHEN PROJECT NO. 90-804 SAMPLE NO. 50204 SAMPLE TYPE: SOIL SOURCE: TRIDENT N. LANDFILL

CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1310 STOP: 00/00/00 STATION ID: SB-05

** CASE NUMBER: 14888 SAS NUMBER: MD NUMBER: X744 * * **

MG/KG ANALYTICAL RESULTS MG/KG ANALYTICAL RESULTS **ALUMINUM MANGANESE**

9000 6.3UR ANTIMONY 0.120 MERCURY ARSENIC 8.6J NICKEL 5U 780 38 BARIUM **POTASSIUM** SELENIUM SILVER 10 BERYLLIUM 0.70UR 0.790 CADMIUM 1.30 520J CALCIUM 800 SODIUM 7.5 CHROMIUM 0.470 THALLIUM 2.9 TIN COBALT NA COPPER VANADIUM 4UJ 20UJ 5700J IRON 300 ZINC

25 PERCENT MOISTURE 12 LEAD 780 MAGNESIUM

REMARKS

REMARKS

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90

METALS DATA REPORT *** * * * * * * * * * * ** PROJECT NO. 90-804 ** SOURCE: TRIDENT N. ** STATION ID: SB-06 ** CASE NUMBER: 14888	LANDFILL	PROG ELEM: NSF COLLECTED BY: M COHEN ** CITY: JEDBERG ST: SC ** COLLECTION START: 09/18/90 1445 STOP: 00/00/00 ** MD NUMBER: X867 **
** ** * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	** * * * * * * * * * * * * * * * * * *

REMARKS ***REMARKS***

^{***}FOOTNOTES***

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90

METALS DATA	REPORT												
*** * * * *	* * * * * *	* * * * *	* * * * *	* * * *	* * *	* * * *	* * * *	* * * * * * *	* * * * *	* * * * *	* * * * *	* * * * *	* * *
	Г NO. 90-804		NO. 50206	SAMPLE	TYPE:	SOIL			COLLECTED E	BY: M COHEN			**
** SOURCE:	: TRIDENT N.	LANDFILL					CITY	': JEDBERG		ST: SC			**
** STATION	N ID: SD-01						COLL	ECTION START:	09/17/90	1555 STO	P: 00/00/0	0	**
** CASE NU	JMBER: 14888	•	SAS NUMBER	:			MD	NUMBER: X748					**
**													**
*** * * * *	* * * * * *	* * * * *	* * * * *	* * * *	* * *	* * * *	* * * *	* * * * * * *	* * * * *	* * * * *	* * * * *	* * * * *	***
MG/KG		ANALYTICAI	L RESULTS				MG/KG		ANALYTICAL	L RESULTS			
7000 AL	LUMINUM						15	MANGANESE					
5.9UR AN	NTIMONY						0.120	MERCURY					
2.7J AR	RSENIC						30	NICKEL					
	ARIUM						310	POTASSIUM					
1U BE	RYLLIUM						1UJ	SELENIUM					
	ADMIUM						1.20	SILVER					
1300J CA	ALCIUM						70U	SODIUM					
	IROMI UM						0.440	THALLIUM					
20 00	BALT						NA	TIN					
4UJ CC	PPER						23J	VANADIUM					
	RON						20U	ZINC					
13	AD						23	PERCENT MOIS	STURE				
380 M A	AGNESIUM												

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90 METALC DATA DECORT

METALS DATA REPORT *** * * * * * * * * * * * * * * * * *		CITY: JEDBERG	* * * * * * * * * * * * * * * * * * *
** STATION ID: SD-02 ** CASE NUMBER: 14888 **	SAS NUMBER:	COLLECTION START MD NUMBER: X747	**
*** * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	MG/KG 4.7 O.12U MERCURY 1.3U NICKEL 93 POTASSIUM 1UJ SELENIUM 1.1U SILVER 70U SODIUM O.46U THALLIUM NA TIN 33J VANADIUM 3U ZINC 17 PERCENT MO	ANALYTICAL RESULTS

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90 METALC DATA DEDORT

METALS DA	NTA REPORT									
*** * * *	* * * * * * *	* * * * *	* * * * *	* * * * * * *	* * * *	* * * * *	· * * * * * * *	* * * * * * * *	* * * * * * * * *	* * * ***
	ECT NO. 90-804	SAMPLE	NO. 50208	SAMPLE TYPE:	SOIL			LLECTED BY: M CO	DHEN	**
** SOUR		LANDFILL				CITY:	JEDBERG	ST: SC		**
	ION ID: SD-03					COLLE	CTION START: 09	9/17/90 1200	STOP: 00/00/00	**
	NUMBER: 14888		SAS NUMBER:			M/D N	IUMBER: X745			**
**										**
*** * * *	* * * * * * *	* * * * *	* * * * *	* * * * * * *	* * * *	* * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * *		* * * ***
MG/KG		ANALYTICA	L RESULTS			_MG/KG		NALYTICAL RESULT	5	
11000	ALUMINUM					18	MANGANESE			
5.8UR	ANTIMONY					0.120	MERCURY			
2UJ	ARSENIC					30	NICKEL			
30 10	BARIUM					380	POTASSIUM			
10	BERYLLIUM					0.79UR	SELENIUM			
0.720	CADMIUM					1.20	SILVER			
1200J	CALCIUM					80ñ	SODIUM			
15	CHROMIUM					0.520	THALLIUM			
1.8	COBALT					NA .	TIN			
307	COPPER					29J 20U	VANADIUM			
15000J	IRON					200 28	ZINC	IDE		
9.9	LEAD					25	PERCENT MOIST	UKE		
390	MAGNESIUM									

REMARKS

REMARKS

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/05/90

*** PROJECT NO. 90-804	METALS D/	ATA REPORT					
** SOURCE: TRIDENT N. LANDFILL ** STATION ID: SD-04 ** CASE NUMBER: 14888 SAS NUMBER: ** MG/KG ANALYTICAL RESULTS 6300 ALUMINUM 5.5UR ANTIMONY 3UJ ARSENIC 20 BARIUM 11 BERYLLIUM 0.68U CADMIUM 0.68U CADMIUM 0.68U CADMIUM 1.10 SILVER 1700J CALCIUM 9.7 CHROMIUM 9.7 CHROMIUM 20 COBALT ** CITY: JEDBERG CCLECTION START: 09/17/90 1135 STOP: 00/00/00 ** MR/KG ANALYTICAL RESULTS ** MD NUMBER: X742 ** ANALYTICAL RESULTS ** ANALYTICA	*** * * *		* * * * * * * * * *		* * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * ***
** STATION ID: SD-04 ** CASE NUMBER: 14888 SAS NUMBER:				SAMPLE TYPE: SOIL			**
** CASE NUMBER: 1488			LANDFILL		CITY: JE		
**					COLLECTION	ON START: 09/17/90 1135 STO	
MG/KG ANALYTICAL RESULTS MG/KG ANALYTICAL RESULTS 6300 ALUMINUM 5.5UR ANTIMONY 3UJ ARSENIC 20 BARIUM 1U BERYLLIUM 0.68U CADMIUM 0.68U CADMIUM 1.1U SILVER 1700J CALCIUM 9.7 CHROMIUM 2U COBALT MG/KG ANALYTICAL RESULTS ANALYTICAL RESULTS	** CASE	E NUMBER: 14888	SAS NUMBER	:	MD NUMBI	BER: X742	
MG/KG	**						
6300 ALUMINUM 8.3 MANGANESE 5.5UR ANTIMONY 0.11U MERCURY 3UJ ARSENIC 2U NICKEL 20 BARIUM 260 POTASSIUM 1U BERYLLIUM 0.73UR SELENIUM 0.68U CADMIUM 1.1U SILVER 1700J CALCIUM 130U SODIUM 9.7 CHROMIUM 0.49U THALLIUM 2U COBALT NA TIN		. * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * :	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * ***
5.5UR ANTIMONY 0.11U MERCURY 3UJ ARSENIC 2U NICKEL 2O BARIUM 26O POTASSIUM 1U BERYLLIUM 0.73UR SELENIUM 0.68U CADMIUM 1.1U SILVER 1700J CALCIUM 130U SODIUM 9.7 CHROMIUM 0.49U THALLIUM 2U COBALT NA TIN			ANALYTICAL RESULTS				
SUJ ARSENIC 2U NICKEL 20 BARIUM 260 POTASSIUM 11 BERYLLIUM 0.73UR SELENIUM 0.68U CADMIUM 1.1U SILVER 170OJ CALCIUM 130U SODIUM 9.7 CHROMIUM 0.49U THALLIUM 2U COBALT NA TIN	6300						
0.68U CADMIUM 1.1U SILVER 17OOJ CALCIUM 13OU SODIUM 9.7 CHROMIUM 0.49U THALLIUM 2U COBALT NA TIN	5.5UK						
0.68U CADMIUM 1.1U SILVER 17OOJ CALCIUM 13OU SODIUM 9.7 CHROMIUM 0.49U THALLIUM 2U COBALT NA TIN	300						
0.68U CADMIUM 1.1U SILVER 17OOJ CALCIUM 13OU SODIUM 9.7 CHROMIUM 0.49U THALLIUM 2U COBALT NA TIN	20						
170OJ CALCIŬM 130U SODIUM 9.7 CHROMIUM 0.49U THALLIUM 2U COBALT NA TIN	0 6011						
9.7 CHROMIUM O.49U THALLIUM 2U COBALT NA TIN	1700 1						
ŽU COBALT NA TIN							
AU.I COPPER							
	ร ีบับ	COPPER					
180OOJ IRON	180000.1				6Ŭ 7Î		
ÎBÔOOJ ÎRÔN BÛ ZINC 8.3 LEAD 24 PERCENT MOISTURE					ŽŽ PE		
430 MAGNESIUM							

REMARKS ***REMARKS***

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region IV Environmental Services Division College Station Road, Athens, Ga. 30613

****MEMORANDUM*****

DATE: 11/06/90

SUBJECT: Results of Specified Analysis;

90-804 TRIDENT N. LANDFILL

JEDBERG SC CASE NO: 14888

FROM: Robert W. Knight

Chief, Laboratory Evaluation/Quality Assurance Section

TO: PHIL BLACKWELL

Attached are the results of analysis of samples collected as part of the subject project.

As a result of the Quality Assurance Review, certain data qualifiers may have been placed on the data. Attached is a DATA QUALIFIER REPORT which explains the reasons that these qualifiers were required.

If you have any questions please contact me.

ATTACHMENT

(6 C'

INORGANIC DATA QUALIFIERS REPORT

Case Number: 14888
Project Number: 90-804
Site: Trident N. Landfill, Jedberg, SC

11 - 4	Ele	ment			Flag	Samples_Affected	Reason				
Water	As, V	Be,	Mn,	Se,	υ	All positives >IDL but <crdl< td=""><td>Baseline instability</td><td></td></crdl<>	Baseline instability				
			Ca, Na,		U	All positives)IDL but <10X contaminant level	Positives in Blanks				
		H	g		J	A11	Matrix spike recovery -	74%			
		S	е		J	A11	Matrix spike recovery =	72.1%			
		T	1		J	A11	Matrix spike recovery =	73.3%			
		Zı	n		J	A11	Matrix duplicate RPD =	57.8%			
		Ва	a		J	A11	Serial dilution percent difference = 11.6%				
<u>Soil</u>											
	As, V	Be,	Mn,	Se,	υ	All positives >IDL but <crdl< td=""><td>Baseline instability</td><td></td></crdl<>	Baseline instability				
			Ca, Na,		U	All positives)IDL but <10X contaminant level	Positives in Blanks				
		SI	o		J R	All positives All negatives	Matrix spike recovery =	15.3%			
		A:	S		J R	All positives All negatives	Matrix spike recovery =	-9.3%			
		Cı	1		J	A11	Matrix duplicate RPD =	54.7%			
		Se	e		J R	All positives All negatives	Matrix spike recovery = - Matrix duplicate RPD =				
		V			J	A11		73.7% 67.5%			
		Fe	9		J	A11	Matrix duplicate RPD =	36.1%			
		Ca	a		J	A11	Serial dilution percent difference = 40.4%				

11/05/90

* *

* *

* *

** **

* ***

SPECIFIED ANALYSIS DATA REPORT

**

. PROG ELEM: NSF COLLECTED BY: M COHEN PROJECT NO. 90-804 SAMPLE NO. 50185 SAMPLE TYPE: GROUNDWA SOURCE: TRIDENT N. LANDFILL STATION ID: PB-01 ŚŤ: "SČ CITY: JEDBERG

COLLECTION START: 09/17/90 0740 STOP: 00/00/00 D. NO.: MD NO: X737 * * ** CASE.NO.: 14888 SAS NO.:

> RESULTS UNITS PARAMETER 10U UG/L CYANIDE

11/05/90

* *

**

**

SPECIFIED ANALYSIS DATA REPORT

**

PROJECT NO. 90-804 SAMPLE NO. 50186 SAMPLE TYPE: GROUNDWA PROG ELEM: NSF COLLECTED BY: M COHEN **

SOURCE: TRIDENT N. LANDFILL CITY: JEDBERG ST: SC

COLLECTION START: 09/18/90 1500 STOP: 00/00/00 D. NO.: X746 MD NO: X746 ** STATION ID: MW-01 SAS NO.:

** CASE . NO .: 14888 D. NO.: X746 ** ** * *

> RESULTS UNITS PARAMETER 10U UG/L CYANIDE

11/05/90

* *

** **

**

SPECIFIED ANALYSIS DATA REPORT

**

PROG ELEM: NSF COLLECTED BY: M COHEN

PROJECT NO. 90-804 SAMPLE NO. 50187 SAMPLE TYPE: GROUNDWA'SOURCE: TRIDENT N. LANDFILL STATION ID: MW-02

CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1120 STOP: 00/00/00 ** D. NO.: X753 MD NO: X753 ** CASE.NO.: 14888 SAS NO.:

** **

> RESULTS UNITS PARAMETER 10U UG/L CYANIDE

11/05/90

* *

**

**

SPECIFIED ANALYSIS DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50188 SAMPLE TYPE: GROUNDWA PROG ELEM: NSF COLLECTED BY: M COHEN

SOURCE: TRIDENT N. LANDFILL STATION ID: MW-03 ** CITY: JEDBERG ST: SC **

COLLECTION START: 09/18/90 1200 STOP: 00/00/00 D. NO.: X754 MD NO: X754 ** CASE.NO.: 14888 SAS NO.: ** ** * *

> RESULTS UNITS PARAMETER 10U UG/L CYANIDE

11/05/90

* * * **

SPECIFIED ANALYSIS DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50189 SAMPLE TYPE: GROUNDWA PROG ELEM: NSF COLLECTED BY: M COHEN * * SOURCE: TRIDENT N. LANDFILL STATION ID: MW-04 CASE.NO.: 14888 SAS CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1435 STOP: 00/00/00 D. NO.: X755 MD NO: X755 ** ** ** ** ** SAS NO : ** * * * *

RESULTS UNITS PARAMETER 100 UG/L CYANIDE

11/05/90

* *

**

SPECIFIED ANALYSIS DATA REPORT

**

**

PROJECT NO. 90-804 SAMPLE NO. 50190 SAMPLE TYPE: GROUNDWA SOURCE: TRIDENT N. LANDFILL STATION ID: PW-01 PROG ELEM: NSF COLLECTED BY: M COHEN

CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 0920 STOP: 00/00/00

** ** CASE.NO.: 14888 D. NO.: X751 MD NO: X751 ** ** SAS NO.: ** **

RESULTS UNITS PARAMETER 10U UG/L CYANIDE

11/05/90

* *

**

SPECIFIED ANALYSIS DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50191 SAMPLE TYPE: GROUNDWA PROG ELEM: NSF COLLECTED BY: M COHEN

SOURCE: TRIDENT N. LANDFILL STATION ID: PW-02 CITY: JEDBERG ST: SC **

COLLECTION START: 09/18/90 1010 STOP: 00/00/00 D. NO.: X752 MD NO: X752 ** ** ** CASE . NO .: 14888 SAS NO.: D. NO.: X752 ** * *

RESULTS UNITS PARAMETER 10U UG/L CYANIDE

11/05/90

* *

**

**

**

* *

SPECIFIED ANALYSIS DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50195 SAMPLE TYPE: SOIL SOURCE: TRIDENT N. LANDFILL PROG ELEM: NSF COLLECTED BY: M COHEN

CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1100 STOP: 00/00/00 STATION ID: SS-01 ** CASE.NO.: 14888 SAS NO.: D. NO.: X740 MD NO: X740 ** * *

> RESULTS UNITS PARAMETER 1U MG/KG CYANIDE

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

11/05/90

* *

**

SPECIFIED ANALYSIS DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50196 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN **

CITY: JEDBERG ST: SC

SOURCE: TRIDENT N. LANDFILL STATION ID: SS-02 CASE.NO.: 14888 SAS COLLECTION START: 09/18/90 1120 STOP: 00/00/00 D. NO.: X749 MD NO: X749 ** ** ** SAS NO.: ** ** **

RESULTS UNITS PARAMETER 1.10 MG/KG CYANIDE

11/05/90

SPECIFIED ANALYSIS DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50197 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN ** * * SOURCE: TRIDENT N. LANDFILL CITY: JEDBERG ST: SC ** ** COLLECTION START: 09/18/90 1200 STOP: 00/00/00 D. NO.: X756 MD NO: X756 ** STATION ID: SS-03 **

** CASE . NO .: 14888 SAS NO.: ** ** **

> RESULTS UNITS PARAMETER 1.1U MG/KG CYANIDE

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

11/05/90

* *

** **

SPECIFIED ANALYSIS DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50198 SAMPLE TYPE: SOIL SOURCE: TRIDENT N. LANDFILL STATION ID: SS-04 CASE.NO.: 14888 SAS NO.: PROG ELEM: NSF COLLECTED BY: M COHEN ** **

CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1020 STOP: 00/00/00 D. NO.: X738 MD NO: X738 **

** ** ** **

> RESULTS UNITS PARAMETER 1.2U MG/KG CYANIDE

11/05/90

**

**

**

SPECIFIED ANALYSIS DATA REPORT

* *

** **

PROJECT NO. 90-804 SAMPLE NO. 50199 SAMPLE TYPE: SOIL SOURCE: TRIDENT N. LANDFILL PROG ELEM: NSF COLLECTED BY: M COHEN

CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1245 STOP: 00/00/00 D. NO.: X743 MD NO: X743 STATION ID: SS-05 CASE . NO .: 14888 D. NO.: X743

** SAS NO.: ** * * **

> RESULTS UNITS PARAMETER 1.1U MG/KG CYANIDE

11/05/90

**

**

**

SPECIFIED ANALYSIS DATA REPORT

**

PROG ELEM: NSF COLLECTED BY: M COHEN

PROJECT NO. 90-804 SAMPLE NO. 50200 SAMPLE TYPE: SOIL SOURCE: TRIDENT N. LANDFILL STATION ID: SB-01

CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1125 STOP: 00/00/00 D. NO.: X741 MD NO: X741 ** ** CASE.NO.: 14888 SAS NO.:

** ** **

> RESULTS UNITS PARAMETER 1.3U MG/KG CYANIDE

11/05/90

* *

**

SPECIFIED ANALYSIS DATA REPORT

**

PROJECT NO. 90-804 SAMPLE NO. 50201 SAMPLE TYPE: SOIL SOURCE: TRIDENT N. LANDFILL

PROG ELEM: NSF COLLECTED BY: M COHEN

CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1135 STOP: 00/00/00 D. NO.: X750 MD NO: X750 STATION ID: SB-02 CASE.NO.: 14888 ** ** ** SAS NO.: ** ** * *

> RESULTS UNITS PARAMETER 1.2U MG/KG CYANIDE

11/05/90

**

**

SPECIFIED ANALYSIS DATA REPORT

**

**

PROG ELEM: NSF COLLECTED BY: M COHEN PROJECT NO. 90-804 SAMPLE NO. 50202 SAMPLE TYPE: SOIL

SOURCE: TRIDENT N. LANDFILL STATION ID: SB-03 CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1225 STOP: 00/00/00

** ** CASE.NO .: 14888 D. NO.: X866 MD NO: X866 ** ** SAS NO.: ** **

> RESULTS UNITS PARAMETER 1.20U MG/KG CYANIDE

11/05/90

**

**

**

SPECIFIED ANALYSIS DATA REPORT

**

PROJECT NO. 90-804 SAMPLE NO. 50203 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN

SOURCE: TRIDENT N. LANDFILL STATION ID: SB-04 CASE.NO.: 14888 SAS CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1035 STOP: 00/00/00 D. NO.: X739 MD NO: X739 ** ** SAS NO.:

* * **

> RESULTS UNITS PARAMETER 1.2U MG/KG CYANIDE

11/05/90

* *

**

**

SPECIFIED ANALYSIS DATA REPORT

**

**

PROJECT NO. 90-804 SAMPLE NO. 50204 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN

SOURCE: TRIDENT N. LANDFILL CITY: JEDBERG ST: SC

COLLECTION START: 09/17/90 1310 STOP: 00/00/00 D. NO.: X744 MD NO: X744 STATION ID: SB-05

** CASE.NO .: 14888 SAS NO.: ** **

RESULTS UNITS PARAMETER 1.3U MG/KG CYANIDE

11/05/90

**

**

SPECIFIED ANALYSIS DATA REPORT

PROG ELEM: NSF COLLECTED BY: M COHEN PROJECT NO. 90-804 SAMPLE NO. 50205 SAMPLE TYPE: SOIL SOURCE: TRIDENT N. LANDFILL CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1445 STOP: 00/00/00 STATION ID: SB-06 **

CASE.NO.: 14888 D. NO.: X867 MD NO: X867 ** ** SAS NO.: * * **

> RESULTS UNITS PARAMETER 20 MG/KG CYANIDE

11/05/90

SPECIFIED ANALYSIS DATA REPORT

RESULTS UNITS PARAMETER
1.3U MG/KG CYANIDE

11/05/90

**

**

SPECIFIED ANALYSIS DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50207 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN SOURCE: TRIDENT N. LANDFILL STATION ID: SD-02

CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1535 STOP: 00/00/00 D. NO.: X747 MD NO: X747 ** ** ** CASE.NO.: 14888 SAS NO.: ** ** **

> RESULTS UNITS PARAMETER 1.2U MG/KG CYANIDE

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

11/05/90

SPECIFIED ANALYSIS DATA REPORT

** PROJECT NO. 90-804 SAMPLE NO. 50208 SAMPLE TYPE: SOIL

** SOURCE: TRIDENT N. LANDFILL

** STATION ID: SD-03

** CASE.NO.: 14888 SAS NO.:

** CASE.NO.: 14888 SAS NO.:

** PROJECT NO. 90-804 SAMPLE NO. 50208 SAMPLE TYPE: SOIL

PROG ELEM: NSF COLLECTED BY: M COHEN

** COLLECTION START: 09/17/90 1200 STOP: 00/00/00

**

** CASE.NO.: 14888 SAS NO.:

** **

> RESULTS UNITS PARAMETER 1.4U MG/KG CYANIDE

11/05/90

SPECIFIED ANALYSIS DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50209 SAMPLE TYPE: SOIL SOURCE: TRIDENT N. LANDFILL STATION ID: SD-04 CASE.NO.: PROG ELEM: NSF COLLECTED BY: M COHEN ** ** **

CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1135 STOP: 00/00/00 D. NO.: X742 MD NO: X742 ** ** ** ** ** **

> RESULTS UNITS PARAMETER 1.3U MG/KG CYANIDE

SITE TRIDENT NORTH PROJECT # 90-804	H LF	(FIT)	. •	STATE SC			ROGER FRANKLIN 09/17/90	(NUS)
SOILVOA BOOKED	11	DATA	RECEIVED	11/19/90	FOR	16	SAMPLES	
H20VOA BOOKED	7	DATA	RECEIVED	11/19/90	FOR	7	SAMPLES	
SOILEXT BOOKED	10	DATA	RECEIVED	11/19/90	FOR	15	SAMPLES	
H2OEXT BOOKED	7	DATA	RECEIVED	11/19/90	FOR	7	SAMPLES	
SOILPEST BOOKED	10	DATA	RECEIVED	11/19/90	FOR	15	SAMPLES	
H2OPEST BOOKED	7	DATA	RECEIVED	11/19/90	FOR	7	SAMPLES	
SOILMET BOOKED	10	DATA	RECEIVED	11/13/90	FOR	15	SAMPLES	
H2OMET BOOKED	7	DATA	RECEIVED	11/13/90	FOR	7	SAMPLES	
SOILCN BOOKED	10	DATA	RECEIVED	11/13/90	FOR	15	SAMPLES	
H2OCN BOOKED	7	DATA	RECEIVED	11/13/90	FOR	7	SAMPLES	
SOILOTH1 BOOKED	o	DATA	RECEIVED	/ /	FOR		SAMPLES	
SOILOTH2 BOOKED	0	DATA	RECEIVED	/ /	FOR		SAMPLES	
H20OTH1 BOOKED	0	DATA	RECEIVED	/ /	FOR		SAMPLES	
H2OOTH2 BOOKED	0	DATA	RECEIVED	/ /	FOR		SAMPLES	
OTHER1 BOOKED	0	DATA	RECEIVED	/ /	FOR		SAMPLES	
OTHER2 BOOKED	o	DATA	RECEIVED	/ /	FOR		SAMPLES	
OU DECHEOTEDO N								

OV REQUESTED? N

LAB(CLP/ESD) CLP

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY SISB/SAS

Region IV
Environmental Services Division
College Station Rood, Athens, Ga. 3061

TILANTA. GA.

*****MEMORANDUM*****

DATE: 11/07/90

Results of Purgeable Organic Analysis; SUBJECT:

TRIDENT N. LANDFILL JEDBERG SC 90-804

CASE NO: 14888

FROM: Robert W. Knight

Chief, Laboratory Evaluation/Quality Assurance Section

TO: PHIL BLACKWELL

Attached are the results of analysis of samples collected as part of the subject project.

As a result of the Quality Assurance Review, certain data qualifiers may have been placed on the data. Attached is a DATA QUALIFIER REPORT which explains the reasons that these qualifiers were required.

If you have any questions please contact me.

ATTACHMENT

ORGANIC DATA QUALIFIER REPORT

Case Number 14888

Project Number

90-804 SAS Number

Site ID. Trident N. Landfill, Jedberg, SC.

Affected Samples	Compound or Fraction	Flag <u>Used</u>	Reason
Volatiles DX753,738,740,741 744,750,867	, all positives	J	<quantitation limit<="" td=""></quantitation>
Extractables all soil samples	1,2,4-trichlorobenzene 2,4-dimethylphenol	J R	low recovery QC spike unacceptable recovery QC spike
all samples all water samples DX740,744	3-nitroaniline di-n-butylphthalate butylbenzylphthalate	R R J	unacceptable QC spike recovery unacceptable QC spike recovery <quantitation limit<="" td=""></quantitation>
DX740,741,744	all extractables except 2,4-dimethylphenol and 3-nitroaniline	J	excessive holding time
DX755	all extractables except 3-nitroaniline and di-n-butylphthalate	J	exceeded 40CFR136 extraction
DX738	di-n-octylphthalate	J	holding time internal standard low
	benzo(b/k)fluoranthene benzo(a)pyrene indeno(1,2,3-cd)pyrene	J J J	internal standard low internal standard low internal standard low
DX747	dibenz(a,h)anthracene benzo(g,h,i)perylene di-n-octylphthalate	J J R	internal standard low internal standard low internal standard low internal standard unacceptable
DATAT	benzo(b/k)fluoranthene benzo(a)pyrene	R R	internal standard unacceptable internal standard unacceptable
	indeno(1,2,3-cd)pyrene dibenz(a,h)anthracene benzo(g,h,i)perylene	R R R	internal standard unacceptable internal standard unacceptable internal standard unwcceptable
Pesticides all samples	beta-BHC	R	unacceptable QC recovery
all waters	heptachlor DDE and DDD	J J	low QC spike recovery low QC spike recovery

PUR	GEABLE ORGANICS DATA	REPORT	CFA NEGION IV ES	D, ATTIL	N3, GA.	11/00/30
* * * * * * * * *	PROJECT NO. 90-804 SOURCE: TRIDENT N. STATION ID: MW-01		TYPE: GROUNDWA	CITY:	ELEM: NSF COLLECTED BY: M COHEN JEDBERG ST: SC CTION START: 09/18/90 1500 STOP: C	* * * * * * * * * * * * * * * * * * *
**	CASE NO.: 14888	SAS	NO.:	D. N	O.: X746	**
***	* * * * * * * * * * * * * * * * * * *	ANALYTICAL RESULTS		* * * * UG/L	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * ***
	10 U CHLOROMETHANE 10 U BROMOMETHANE 10 U VINYL CHLORID 10 U CHLOROETHANE 5 U METHYLENE CHL 10 U ACETONE 5 U CARBON DISULF 5 U 1,1-DICHLOROE 5 U 1,1-DICHLOROE 5 U 1,2-DICHLOROE 5 U CHLOROFORM 5 U 1,2-DICHLOROE 10 U METHYL ETHYL 5 U 1,1,1-TRICHLO 10 U VINYL ACETATE 5 U BROMODICHLOROE	E ORIDE IDE THENE(1,1-DICHLOROETHYLENE) THANE THENE (TOTAL) THANE KETONE ROETHANE HLORIDE		ນກອນກອນຄອງວຸກອນຄອນຄອ ອອກອນຄອນຄອງວຸກອນຄອນຄອນຄອນຄອງວຸກອານອີກອນຄອນຄອນຄອນຄອນຄອນຄອນຄອນຄອນຄອນຄອນຄອນຄອນຄອ	1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRICHLOROETHENE(TRICHLOROETHYLENE) DIBROMOCHLOROMETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE BENZENE TRANS-1,3-DICHLOROPROPENE BROMOFORM METHYL ISOBUTYL KETONE METHYL BUTYL KETONE TETRACHLOROETHENE(TETRACHLOROETHYLEN 1,1,2,2-TETRACHLOROETHANE TOLUENE CHLOROBENZENE ETHYL BENZENE STYRENE TOTAL XYLENES	E)

REMARKS ***REMARKS***

^{*}FOUNDIES***

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

^{*}K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
PURGEABLE ORGANICS DATA REPORT
PROG ELEM: NSF COLLECTED BY: M COHEN
    PROJECT NO. 90-804 SAMPLE NO. 50188 SAMPLE TYPE:
* *
    SOURCE:
                                                       CITY: JEDBERG ST: SC
                                                                                                     * *
                                                       COLLECTION START: 09/18/90 1200 STOP: 00/00/00
    STATION ID: MW-03
**
                                                                                                     * *
                                                                                                     **
* *
                                    SAS NO.:
                                                      D. NO.: X754
**
   CASE NO.: 14888
                                                                                                     **
UG/L ANALYTICAL RESULTS
   UG/L
       ANALYTICAL RESULTS
   10 U CHLOROMETHANE
                                                       5 U 1,2-DICHLOROPROPANE
   10 U BROMOMETHANE
                                                       5 U CIS-1,3-DICHLOROPROPENE
                                                       5 U TRICHLOROETHENE (TRICHLOROETHYLENE)
   10 U VINYL CHLORIDE
   10 U CHLOROETHANE
                                                       5 U DIBROMOCHLOROMETHANE
                                                       5 U 1,1,2-TRICHLOROETHANE
5 U BENZENE
   Š Ü
       METHYLENE CHLORIDE
   10 U ACETONE
                                                           TRANS-1,3-DICHLOROPROPENE
   5 U CARBON DISULFIDE
5 U 1,1-DICHLOROETHENE(1,1-DICHLOROETHYLENE)
                                                       Š Ŭ
                                                       Š Ŭ
                                                           BROMOFORM
    5 U 1,1-DICHLOROETHANE
                                                           METHYL ISOBUTYL KETONE
                                                       10 U
    5 U 1.2-DICHLOROETHENE (TOTAL)
                                                           METHYL BUTYL KETONE
                                                           TETRACHLOROETHENE (TETRACHLOROETHYLENE)
    5 U CHLOROFORM
   5 U 1.2-DICHLOROETHANE
                                                       5 Ú
                                                           1.1.2.2-TETRACHLOROETHANE
   10 U METHYL ETHYL KETONE
                                                       5 U
                                                           TOLUENE
   5 U 1,1,1-TRICHLOROETHANE
                                                       5 Ŭ
                                                           CHLOROBENZENE
                                                       5 Ŭ
                                                           ETHYL BENZENE
STYRENE
    5 U CARBON TETRACHLORIDE
       VINYL ACETATE
                                                       5 Ū
   10 U
   5 U BROMODICHLOROMETHANE
                                                           TOTAL XYLENES
```

REMARKS

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
PURGEABLE ORGANICS DATA REPORT
PROJECT NO. 90-804 SAMPLE NO. 50189 SAMPLE TYPE: GROUNDWA
                                                     PROG ELEM: NSF COLLECTED BY: M COHEN
   SOURCE: TRIDENT N. LANDFILL
                                                      CITY: JEDBERG
                                                                           ST: SC
                                                                                                     * *
   STATION ID: MW-04
                                                      COLLECTION START: 09/18/90 1435 STOP: 00/00/00
                                                                                                     * *
**
                                                                                                     * *
* *
                                    SAS NO.:
                                                                                                     * *
   CASE NO.: 14888
                                                       D. NO.: X755
  UG/L
       ANALYTICAL RESULTS
  UG/L
                                                            ANALYTICAL RESULTS
   10 U CHLOROMETHANE
                                                       5 U 1,2-DICHLOROPROPANE
   10 U BROMOMETHANE
                                                       5 U CIS-1,3-DICHLOROPROPENE
                                                       5 U TRICHLOROETHENE (TRICHLOROETHYLENE)
       VINYL CHLORIDE
       CHLOROETHANE
                                                       5 Ū
                                                           DIBROMOCHLOROMETHANE
  10 U
                                                           1,1,2-TRICHLOROETHANE
BENZENE
   5 U
       METHYLENE CHLORIDE
                                                       5 U
   10 Ú
       ACETONE
                                                       5 U
       CARBON DISULFIDE
                                                       Šΰ
                                                           TRANS-1.3-DICHLOROPROPENE
   5 U
5 U
                                                       ŠŬ
       1.1-DICHLOROETHENE(1.1-DICHLOROETHYLENE)
                                                           BROMOFORM
   5 U 1,1-DICHLOROETHANE
                                                           METHYL ISOBUTYL KETONE
                                                       10 U
   5 U 1.2-DICHLOROETHENE (TOTAL)
                                                       10 U
                                                           METHYL BUTYL KETONE
   5 U CHLOROFORM
                                                           TETRACHLOROETHENE (TETRACHLOROETHYLENE)
   5 U 1.2-DICHLOROETHANE
                                                           1.1.2.2-TETRACHLOROETHANE
  10 U MÉTHYL ETHYL KETONE
                                                       5 U
                                                           TOLUENE
       1,1,1-TRICHLOROETHANE
                                                       5 Ü
                                                           CHLOROBENZENE
       CARBON TETRACHLORIDE
                                                       5 U
                                                           ETHYL BENZENE
       VINYL ACETATE
                                                       5 Ü
                                                           STYRENE
   10 U
       BROMODICHLOROMETHANE
                                                           TOTAL XYLENES
```

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

^{*}R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

DHD	GEABLE ORGANICS DAT		GION IV ESD, ATHENS, QA.	11/00/90
***	PROJECT NO. 90-80 SOURCE: TRIDENT N STATION ID: PW-01	* * * * * * * * * * * * * * * * * * *	GROUNDWA PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 0920 STOP	* * * * * * * * * * * * * * * * * * *
**	CASE NO.: 14888	SAS NO.:	D. NO.: X751	**
***	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	UG/L ANALYTICAL RESULTS	* * * * * * * * * * * * * * * * * * * *
	5 U 1,1-DICHLORO	DE LORIDE FIDE ETHENE(1,1-DICHLOROETHYLENE) ETHANE ETHENE (TOTAL) ETHANE KETONE OROETHANE CHLORIDE E	5 U 1,2-DICHLOROPROPANE 5 U CIS-1,3-DICHLOROPROPENE 5 U TRICHLOROETHENE (TRICHLOROETHYLENE 5 U DIBROMOCHLOROMETHANE 5 U 1,1,2-TRICHLOROETHANE 5 U BÉNZENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U BROMOFORM 10 U METHYL ISOBUTYL KETONE 10 U METHYL BUTYL KETONE 5 U TETRACHLOROETHENE (TETRACHLOROETHY 5 U TOLUENE 5 U TOLUENE 5 U CHLOROBENZENE 5 U CHLOROBENZENE 5 U STYRENE 5 U TOTAL XYLENES	

FOOTNOTES

REMARKS

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

DHD	GEABLE ORGANICS DATA	A DEDODT	EPA-1	KEGION IV ES	U, AIHE	NS, GA.				11/06/90
	* * * * * * * * * * * *		* * * * * * * * *						* * * * * .	
**	PROJECT NO. 90-804	4 SAMPLE NO. 50	191 SAMPLE TYPE		PROG	ELEM: NSF	COLLECTED	BY: M COHEN		**
**	SOURCE: TRIDENT N.					JEDBERG		ST: SC		**
**	STATION ID: PW-02				COLLE	CTION START	: 09/18/90	1010 STOP	00/00/00	**
**	CASE NO - 14888		SAS NO .		D 14	n v750				**
***	CASE NO.: 14888		# * * * * * * * *		* * * *	* * * * *	* * * * * *		* * * * * *	
	UG/L	ANALYTICAL RESUL			UG/L			AL RESULTS		
	10 U CHLOROMETHANE	<u>:</u>			5 U	1,2-DICHLO				
	10 U BROMOMETHANE	NE			5 U	CIS-1,3-DI			,	
	10 U VINYL CHLORIE 10 U CHLOROETHANE)E			5 U 5 U	DIBROMOCHL		LOROETHYLENE)	
	S II METHVIENE CHI	ORIDE			5555 555 5	1.1.2-TRIC				
	10 U ACETONE				5 Ū	BÉNZENE				
	5 U CARBON DISULE				5 U	TRANS-1,3-	DICHLOROPRO	PENE		
	5 U 1.1-DICHLORUE	ETHENE(1,1-DICHLOR	(OETHYLENE)		5 0	BROMOFORM	DUTUL PETAN	-		
	10 U ACETONE 5 U CARBON DISULF 5 U 1,1-DICHLOROE 5 U 1,2-DICHLOROE 5 U 1,2-DICHLOROE 5 U CHLOROFORM 5 U 1,2-DICHLOROE	THENE (TOTAL)			10 U 10 U	METHYL ISOMETHYL BUT		E		
	5 U CHLOROFORM	MENE (TOTAL)			5 U			RACHLOROETHY	ENE)	
	5 U 1,2-DICHLOROE				5 Ü 5 U	1,1,2,2-TE				
	10 U MEIHYL EIHYL				<u>5</u> U	TOLUENE				
	5 U 1,1,1-TRICHLO				5 Ú	CHLOROBENZ				
	5 U CARBON TETRAC	NEUKIDE			5 Ü 5 U	ETHYL BENZI	ENE			
	5 U BROMODICHLORO				5 Ŭ	TOTAL XYLE	NES			

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
PURGEABLE ORGANICS DATA REPORT
PROG ELEM: NSF COLLECTED BY: M COHEN
   PROJECT NO. 90-804 SAMPLE NO. 50195 SAMPLE TYPE: SOIL
                                                        CITY: JEDBERG ST: SC
   SOURCE: TRIDENT N. LANDFILL
                                                                                                        **
   STATION ID: SS-01
                                                        COLLECTION START: 09/17/90 1100 STOP: 00/00/00
                                                                                                        * *
                                                                                                        * *
* *
   CASE NO.: 14888
                                     SAS NO.:
                                                         D. NO.: X740
                                                                                                        * *
* *
UG/KG
                  ANALYTICAL RESULTS
                                                                       ANALYTICAL RESULTS
   11 U CHLOROMETHANE
                                                         5 U 1,2-DICHLOROPROPANE
                                                         5 U CIS-1,3-DICHLOROPROPENE
   11 U BROMOMETHANE
   11 U VINYL CHLORIDE
                                                            TRICHLOROETHENE (TRICHLOROETHYLENE)
   11 Ŭ
       CHLOROETHANE
                                                             DIBROMOCHLOROMETHANE
                                                             1,1,2-TRICHLOROETHANE
BENZENE
                                                         Š Ŭ
    7U
       METHYLENE CHLORIDE
       ACETONE
   11 U
                                                         5 Ú
                                                         5 Ü
   5 U
       CARBON DISULFIDE
                                                             TRANS-1.3-DICHLOROPROPENE
       1.1-DICHLOROETHENE(1.1-DICHLOROETHYLENE)
   5 U
                                                             BROMOFORM
   5 Ü
       1.1-DICHLOROETHANE
                                                        11 U
                                                             METHYL ISOBUTYL KETONE
                                                             METHYL BUTYL KETONE
TETRACHLOROETHENE (TETRACHLOROETHYLENE)
   5 Ū
       1,2-DICHLOROETHENE (TOTAL)
                                                        11 U
   5 U CHLOROFORM
   Š Ŭ
       1.2-DICHLOROETHANE
                                                             1.1.2.2-TETRACHLOROETHANE
   11 U MÉTHYL ETHYL KETONE
                                                         5 Ü
                                                             TOLUENE
   5 Ú
       1,1,1-TRICHLOROETHANE
                                                         5 Ū
                                                             CHLOROBENZENE
       CARBON TETRACHLORIDE
                                                         Š Ŭ
   5 U
                                                             ETHYL BENZENE
                                                         ŠŬ
       VINYL ACETATE
                                                             STYRENE
   11 U
       BROMODICHLOROMETHANE
                                                             TOTAL XYLENES
                                                             PERCENT MOISTURE
```

FOOTNOTES

REMARKS

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *A-AVERAGE VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

^{*}R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
PURGEABLE ORGANICS DATA REPORT
PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1120 STOP: 00/00/00
    PROJECT NO. 90-804 SAMPLE NO. 50196 SAMPLE TYPE: SOIL
    SOURCE: TRIDENT N. LANDFILL
    STATION ID: SS-02
**
                                                                                                           * *
                                                                                                           * *
* *
    CASE NO.: 14888
                                    SAS NO.:
                                                         D. NO.: X749
                                                                                                           * *
**
ANALYTICAL RESULTS
                                                         UG/KG
                                                                ANALYTICAL RESULTS
   11 U CHLOROMETHANE
                                                          6 U 1,2-DICHLOROPROPANE
   11 U BROMOMETHANE
                                                          6 U CIS-1,3-DICHLOROPROPENE
                                                          6 U TRICHLOROETHENE (TRICHLOROETHYLENE)
   11 U VINYL CHLORIDE
   11 U CHLOROETHANE
                                                          6 U DIBROMOCHLOROMETHANE
    6U METHYLENE CHLORIDE
                                                          6 U 1,1,2-TRICHLOROETHANE
                                                              BÉNZĒNĖ
   11 U ACETONE
                                                          6 Ú
    6 U CARBON DISULFIDE
                                                          6 U
                                                              TRANS-1.3-DICHLOROPROPENE
    6 U 1.1-DICHLOROETHENE(1.1-DICHLOROETHYLENE)
                                                              BROMOFORM
                                                          6 บั
                                                              METHYL ISOBUTYL KETONE METHYL BUTYL KETONE
    6 U 1.1-DICHLOROETHANE
                                                         11 Ŭ
    6 U 1.2-DICHLOROETHENE (TOTAL)
                                                          11 U
    6 U CHLOROFORM
                                                              TETRACHLOROETHENE (TETRACHLOROETHYLENE)
                                                          23
    6 U 1.2-DICHLOROETHANE
                                                          6 U 1.1.2.2-TETRACHLOROETHANE
   11 U METHYL ETHYL KETONE
                                                              TÓLÚENE
                                                          6 U
   6 U 1.1.1-TRICHLOROETHANE
                                                          6 Ú
                                                              CHLOROBENZENE
    6 U CARBON TETRACHLORIDE
                                                          6 Ú
                                                              ETHYL BENZENE
        VINYL ACETATE
                                                              STYRENE
   11 U
                                                          6 Ú
   6 U BROMODICHLOROMETHANE
                                                          6 U TOTAL XYLENES
                                                           10 PERCENT MOISTURE
```

REMARKS

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

^{*}R-OC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
PURGEABLE ORGANICS DATA REPORT
SAMPLE NO. 50197 SAMPLE TYPE: SOIL
                                                         PROG ELEM: NSF COLLECTED BY: M COHEN
                                                                                                         **
* *
   SOURCE:
                                                         CITY: JEDBERG
                                                                               ST: SC
                                                                                                         * *
   STATION ID: SS-03
                                                         COLLECTION START: 09/18/90 1200 STOP: 00/00/00
**
                                                                                                         * *
                                                                                                         * *
   CASE NO.: 14888
                                      SAS NO.:
                                                         D. NO.: X756
                                                                                                         * *
UG/KG
                   ANALYTICAL RESULTS
                                                        UG/KG
                                                                        ANALYTICAL RESULTS
   11 U CHLOROMETHANE
                                                         6 U 1,2-DICHLOROPROPANE
   11 U BROMOMETHANE
                                                         6 U CIS-1,3-DICHLOROPROPENE
                                                             TRICHLOROETHENE (TRICHLOROETHYLENE)
   11 U VINYL CHLORIDE
   11 U
       CHLOROETHANE
                                                         6 Ū
                                                             DIBROMOCHLOROMETHANE
                                                             1,1,2-TRICHLOROETHANE
BENZENE
    7U
       METHYLENE CHLORIDE
                                                         6 Ú
       ACETONE
   11 U
                                                         6 U
                                                             TRANS-1,3-DICHLOROPROPENE
   6 U
       CARBON DISULFIDE
                                                         6 U
       1.1-DICHLOROETHENE(1.1-DICHLOROETHYLENE)
                                                             BROMOFORM
                                                         6 U
   6 U
       1.1-DICHLOROETHANE
                                                         11 Ù
                                                             METHYL ISOBUTYL KETONE
       1.2-DICHLOROETHENE (TOTAL)
                                                             METHYL BUTYL KETONE
                                                         11 U
   6 U CHLOROFORM
                                                              TETRACHLOROETHENE (TETRACHLOROETHYLENE)
                                                         6 U
   6 U 1,2-DICHLOROETHANE
                                                             1,1,2,2-TETRACHLOROETHANE
  11 U METHYL ETHYL KETONE
6 U 1,1,1-TRICHLOROETHANE
                                                         6 U
                                                             TOLUENE
                                                         6 U
                                                             CHLOROBENZENE
   6 U CARBON TETRACHLORIDE
                                                             ETHYL BENZENE
                                                         6 U
   11 U
       VINYL ACETATE
                                                         6 Ú
                                                             STYRENE
       BROMODICHLOROMETHANE
                                                         6 Ú
                                                             TOTAL XYLENES
                                                             PERCENT MOISTURE
```

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

^{*}K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT. *R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/06/90

PURGEABLE ORGANICS DATA REPORT	ETA REGION IN ESS, ATTENDO, GA.	11,00,00
** PROJECT NO. 90-804 SAMPLE NO. 50198 SAM		**
** SOURCE: TRIDENT N. LANDFILL ** STATION ID: SS-04	CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1020 STOP:	00/00/00 **
	5AS NO.: D. NO.: X738	* * * * * * * * * * * * * * * * * * * *
UG/KG ANALYTICAL RESULTS	UG/KG ANALYTICAL RESULTS	
12 U CHLOROMETHANE 12 U BROMOMETHANE 12 U VINYL CHLORIDE 12 U CHLOROETHANE 6U METHYLENE CHLORIDE 12 U ACETONE 6 U CARBON DISULFIDE 6 U 1,1-DICHLOROETHANE 6 U 1,2-DICHLOROETHANE 6 U 1,2-DICHLOROETHENE (1,1-DICHLOROETHYLENI 6 U 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1 U CHLOROFORM 6 U 1,2-DICHLOROETHANE 12 U METHYL ETHYL KETONE 6 U 1,1,1-TRICHLOROETHANE 6 U CARBON TETRACHLORIDE 12 U VINYL ACETATE 6 U BROMODICHLOROMETHANE	6 U 1,2-DICHLOROPROPANE 6 U CIS-1,3-DICHLOROPROPENE 6 U TRICHLOROETHENE(TRICHLOROETHYLENE) 6 U DIBROMOCHLOROMETHANE 6 U 1,1,2-TRICHLOROETHANE 6 U BENZENE 6 U TRANS-1,3-DICHLOROPROPENE 6 U BROMOFORM 12 U METHYL ISOBUTYL KETONE 12 U METHYL BUTYL KETONE 1 J TETRACHLOROETHENE(TETRACHLOROETHYL 6 U 1,1,2,2-TETRACHLOROETHANE 6 U TOLUENE 6 U CHLOROBENZENE 6 U ETHYL BENZENE 6 U STYRENE 6 U TOTAL XYLENES 15 PERCENT MOISTURE	

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

PURGEABLE ORGANICS DATA REPORT		,,
	E TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1245 STOP: C	* * * * * * * * * * * * * * * * * * *
	5 NO.: D. NO.: X743 * * * * * * * * * * * * * * * * * * *	** * * * * * * ***
11 U CHLOROMETHANE 11 U BROMOMETHANE 11 U VINYL CHLORIDE 11 U CHLOROETHANE 11 U CHLOROETHANE 10U METHYLENE CHLORIDE 11 U ACETONE 6 U CARBON DISULFIDE 6 U 1,1-DICHLOROETHENE(1,1-DICHLOROETHYLENE) 6 U 1,2-DICHLOROETHANE 6 U 1,2-DICHLOROETHENE (TOTAL) 6 U CHLOROFORM 6 U 1,2-DICHLOROETHANE 11 U METHYL ETHYL KETONE 6 U 1,1,1-TRICHLOROETHANE 6 U CARBON TETRACHLORIDE 11 U VINYL ACETATE 6 U BROMODICHLOROMETHANE	6 U 1,2-DICHLOROPROPANE 6 U CIS-1,3-DICHLOROPROPENE 6 U TRICHLOROETHENE (TRICHLOROETHYLENE) 6 U DIBROMOCHLOROMETHANE 6 U 1,1,2-TRICHLOROETHANE 6 U BENZENE 6 U TRANS-1,3-DICHLOROPROPENE 6 U BROMOFORM 11 U METHYL ISOBUTYL KETONE 11 U METHYL BUTYL KETONE 6 TETRACHLOROETHENE (TETRACHLOROETHYLENE) 6 U 1,1,2,2-TETRACHLOROETHANE 6 U TOLUENE 6 U CHLOROBENZENE 6 U ETHYL BENZENE 6 U TOTAL XYLENES 9 PERCENT MOISTURE	IE)

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
PURGEABLE ORGANICS DATA REPORT
PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC
    PROJECT NO. 90-804 SAMPLE NO. 50200 SAMPLE TYPE: SOIL
                                                                                                              * *
    SOURCE: TRIDENT N. LANDFILL
    STATION ID: SB-01
                                                            COLLECTION START: 09/17/90 1125 STOP: 00/00/00
* *
                                                                                                              **
                                                                                                              * *
* *
    CASE NO.: 14888
                                        SAS NO.:
                                                            D. NO.: X741
                                                                                                              **
* *
   UG/KG
   UG/KG
         ANALYTICAL RESULTS
                                                                            ANALYTICAL RESULTS
   13 U CHLOROMETHANE
                                                            7 U 1,2-DICHLOROPROPANE
                                                            7 U CÍS-1,3-DICHLOROPROPENE
7 U TRICHLOROETHENE(TRICHLOROETHYLENE)
   13 U BROMOMETHANE
   13 U VINYL CHLORIDE
   13 U CHLOROETHANE
                                                            7 Ū
                                                                DIBROMOCHLOROMETHANE
                                                            7 Ŭ
    20U METHYLENE CHLORIDE
                                                                1,1,2-TRICHLOROETHANE
                                                            7 Ŭ
7 U
                                                                 BÉNZĒNE
   13 U ACETONE
                                                                 TRANS-1.3-DICHLOROPROPENE
    7 U
        CARBON DISULFIDE
    7 Ŭ
        1.1-DICHLOROETHENE(1.1-DICHLOROETHYLENE)
                                                            7 Ŭ
                                                                BROMOFORM
        1,1-DICHLOROETHANE
                                                            13 U
                                                                METHYL ISOBUTYL KETONE
        1,2-DICHLOROETHENE (TOTAL)
                                                                METHYL BUTYL KETONE
        CHLOROFORM
                                                                TETRACHLOROETHENE (TETRACHLOROETHYLENE)
                                                            Ž Ŭ
    7 U
        1.2-DICHLOROETHANE
                                                                1.1.2.2-TETRACHLOROETHANE
   13 Ŭ
        METHYL ETHYL KETONE
1,1,1-TRICHLOROETHANE
                                                                TOLUENE
    7 Ü
                                                            7 Ü
                                                                CHLOROBENZENE
        CÁRBON TETRACHLORIDE
VINYL ACETATE
                                                            Ż Ŭ
                                                                ETHYL BENZENE
                                                            ŹŪ
   13 U
                                                                STYRENE
        BROMODICHLOROMETHANE
                                                            7 U TOTAL XYLENES
    7 ()
                                                             24 PERCENT MOISTURE
```

REMARKS

FOOTNOTES *A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
PURGEABLE ORGANICS DATA REPORT
PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1135 STOP: 00/00/00
    PROJECT NO. 90-804 SAMPLE NO. 50201 SAMPLE TYPE: SOIL
**
    SOURCE: TRIDENT N. LANDFILL
* *
                                                                                                                   * *
    STATION ID: SB-02
**
                                                                                                                   **
**
                                                                                                                  **
                                         SAS NO.:
* *
    CASE NO.: 14888
                                                               D. NO.: X750
                                                                                                                  **
ANALYTICAL RESULTS
                                                             UG/KG
                                                                              ANALYTICAL RESULTS
                                                               6 U 1,2-DICHLOROPROPANE
6 U CIS-1,3-DICHLOROPROPENE
   12 U CHLOROMETHANE
   12 Ŭ
        BROMOMETHANE
   12 U VINYL CHLORIDE
                                                               6 U TRICHLOROETHENE (TRICHLOROETHYLENE)
   12 U
        CHLOROETHANE
                                                               6 U DIBROMOCHLOROMETHANE
     7Ú
        METHYLENE CHLORIDE
                                                               6 U 1.1.2-TRICHLOROETHANE
   12 Ü
                                                               6 U BENZENE
        ACETONE
    6 Ú
        CARBON DISULFIDE
                                                              6 U
                                                                   TRANS-1.3-DICHLOROPROPENE
    6Ú
        1,1-DICHLOROETHENE(1,1-DICHLOROETHYLENE)
                                                               6 Ü
                                                                   BROMOFORM
                                                                   METHYL ISOBUTYL KETONE
METHYL BUTYL KETONE
TETRACHLOROETHENE(TETRACHLOROETHYLENE)
        1,1-DICHLOROETHANE
    6 U
                                                              12 U
    6 Ü
        1.2-DICHLOROETHENE (TOTAL)
    6 Ü
        CHLOROFORM
    6 U 1,2-DICHLOROETHANE
                                                               6 U 1,1,2,2-TETRACHLOROETHANE
   12 U METHYL ETHYL KETONE
                                                               6 U TOLUENE
    6 U 1.1.1-TRICHLOROETHANE
                                                               6 U CHLOROBENZENE
    6 U CARBON TETRACHLORIDE
                                                               2 J ETHYL BENZENE
   12 U
        VINYL ACETATE
                                                               6 ม
                                                                   STYRENE
                                                                   TOTAL XYLENES
PERCENT MOISTURE
        BROMODICHLOROMETHANE
                                                              6 Ü
                                                                20
```

REMARKS

^{*}A-AVERAGE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

DIID	RGEABLE ORGANICS DATA REPORT	A-REGION IV ESD, ATHENS, GA.	11/00/90
***			* * * * * * * * * ***
**	PROJECT NO. 90-804 SAMPLE NO. 50202 SAMPLE TY		**
**	SOURCE: TRIDENT N. LANDFILL STATION ID: SB-03	CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1225 STOP:	00/00/00 **
**	37A7104 18. 38 00	COLLECTION START. 03/10/30 1223 STOR.	**
**	CASE NO.: 14888 SAS NO.	D. NO.: X866	**
***	UG/KG ANALYTICAL RESULTS	UG/KG ANALYTICAL RESULTS	* * * * * * * * * * * * * * * * * * * *
	12 U CHLOROMETHANE 12 U BROMOMETHANE 12 U VINYL CHLORIDE 12 U CHLOROETHANE 7U METHYLENE CHLORIDE 12 U ACETONE 6 U CARBON DISULFIDE 6 U 1,1-DICHLOROETHENE(1,1-DICHLOROETHYLENE) 6 U 1,2-DICHLOROETHANE 6 U 1,2-DICHLOROETHENE (TOTAL) 6 U CHLOROFORM 6 U 1,2-DICHLOROETHANE 12 U METHYL ETHYL KETONE 6 U 1,1-TRICHLOROETHANE 6 U CARBON TETRACHLORIDE 12 U VINYL ACETATE 6 U BROMODICHLOROMETHANE	6 U 1,2-DICHLOROPROPANE 6 U CIS-1,3-DICHLOROPROPENE 6 U TRICHLOROETHENE(TRICHLOROETHYLENE) 6 U DIBROMOCHLOROMETHANE 6 U 1,1,2-TRICHLOROETHANE 6 U BENZENE 6 U TRANS-1,3-DICHLOROPROPENE 6 U BROMOFORM 12 U METHYL ISOBUTYL KETONE 12 U METHYL BUTYL KETONE 6 U TETRACHLOROETHENE(TETRACHLOROETHYLE) 6 U 1,1,2,2-TETRACHLOROETHANE 6 U TOLUENE 6 U CHLOROBENZENE 6 U STYRENE 6 U STYRENE 6 U TOTAL XYLENES 15 PERCENT MOISTURE	NE)

REMARKS

^{*}FOUTNUTES***

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

PURGEABLE ORGANICS DATA		LSD, ATHLNS, GA.	11/00/90
*** * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	PROG ELEM: NSF COLLECTED BY: M CITY: JEDBERG ST: COLLECTION START: 09/17/90 1035	SC **
** CASE NO.: 14888 *** * * * * * * * * * * * * * * * *	SAS NO.: * * * * * * * * * * * * * * * * * * *	D. NO.: X739 * * * * * * * * * * * * * * * * * * *	** * * * * * * * * * * * * * * * * * *
6 U 1,1-DICHLOROE	DE LORIDE FIDE ETHENE(1,1-DICHLOROETHYLENE) ETHANE ETHENE (TOTAL) ETHANE KETONE DROETHANE CHLORIDE	6 U 1,2-DICHLOROPROPANE 6 U CIS-1,3-DICHLOROPROPENE 6 U TRICHLOROETHENE (TRICHLOROE 6 U DIBROMOCHLOROMETHANE 6 U 1,1,2-TRICHLOROETHANE 6 U BENZENE 6 U TRANS-1,3-DICHLOROPROPENE 6 U BROMOFORM 13 U METHYL ISOBUTYL KETONE 13 U METHYL BUTYL KETONE 6 U TETRACHLOROETHENE (TETRACHLE 6 U 1,1,2,2-TETRACHLOROETHANE 6 U TOLUENE 6 U CHLOROBENZENE 6 U ETHYL BENZENE 6 U STYRENE 6 U STYRENE 6 U TOTAL XYLENES 20 PERCENT MOISTURE	

FOOTNOTES

REMARKS

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
PURGEABLE ORGANICS DATA REPORT
PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC
   PROJECT NO. 90-804 SAMPLE NO. 50204 SAMPLE TYPE: SOIL
   SOURCE:
                                                          COLLECTION START: 09/17/90 1310 STOP: 00/00/00
                                                                                                            * *
   STATION ID: SB-05
                                                                                                            **
* *
   CASE NO.: 14888
                                       SAS NO.:
                                                                                                            **
* *
                                                           D. NO.: X744
UG/KG
   UG/KG
                   ANALYTICAL RESULTS
                                                                          ANALYTICAL RESULTS
   14 U CHLOROMETHANE
                                                           7 U 1,2-DICHLOROPROPANE
   14 U
        BROMOMETHANE
                                                           7 U CIS-1,3-DICHLOROPROPENE
                                                           7 U TRICHLOROETHENE (TRICHLOROETHYLENE)
   14 U VINYL CHLORIDE
   14 U CHLOROETHANE
                                                           7 U DIBROMOCHLOROMETHANE
    8U METHYLENE CHLORIDE
                                                           7 U 1,1,2-TRICHLOROETHANE
                                                           7 Ŭ
7 U
   14 U
        ACETONE
                                                               BÉNZENE
    Ź Ū
        CARBON DISULFIDE
                                                               TRANS-1.3-DICHLOROPROPENE
                                                           7 Ŭ
                                                               BROMOFORM
        1.1-DICHLOROETHENE(1.1-DICHLOROETHYLENE)
        1.1-DICHLOROETHANE
                                                          14 U
                                                               METHYL ISOBUTYL KETONE
                                                          14 U METHYL BUTYL KETÖNE
3 J TETRACHLOROETHENE(TETRACHLOROETHYLENE)
    7 U 1.2-DICHLOROETHENE (TOTAL)
       CHLOROFORM
                                                           7 U 1.1.2.2-TETRACHLOROETHANE
    7 U 1.2-DICHLOROETHANE
                                                           7 Ŭ
   200 MÉTHYL ETHYL KETONE
                                                               TÓLÚENE
        1.1.1-TRICHLOROETHANE
                                                               CHLOROBENZENE
        CARBON TETRACHLORIDE
VINYL ACETATE
                                                               ETHYL BENZENE
STYRENE
    7 Ŭ
                                                           7 Ŭ
                                                           Żΰ
   14 U
        BROMODICHLOROMETHANE
                                                               TOTAL XYLENES
                                                           7 Ù
                                                            27 PERCENT MOISTURE
```

REMARKS

^{*}A-AVERAGE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

DURGEARLE ORGAN	NICS DATA REPORT	LPA-REGION IV ESI	D, ATRENS, GA.		11/00/90
*** * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	COLLECTED BY: M COHEN ST: SC 09/18/90 1445 STOP: 00	* * * * * * * * * * * * * * * * * * *
** CASE NO.: *** * * * * * UG/KG	14888 * * * * * * * * * * * * * * * * * *	SAS NO.: * * * * * * * * * * * * * * * * * * *	D. NO.: X867 * * * * * * * * * UG/KG	* * * * * * * * * * * * * * * * * * *	* * * * * * * ***
12 U BROMO 12 U VINYI 12 U CHLOF 9U METHY 12 U ACETO 6 U CARBO 6 U 1,1-[6 U 1,2-[6 U 1,2-[12 U METHY 6 U 7,1,1 6 U 7,1,1	ROMETHANE DMETHANE L CHLORIDE ROETHANE LYLENE CHLORIDE DN DISULFIDE DICHLOROETHENE DICHLOROETHENE DICHLOROETHENE DICHLOROETHANE DICHLOROETHANE DICHLOROETHANE DICHLOROETHANE LETHYL KETONE LATERICHLOROETHANE DN TETRACHLORIDE L ACETATE DDICHLOROMETHANE DDICHLOROMETHANE	THYLENE)	6 U TRICHLOROET 6 U DIBROMOCHLO: 6 U 1,1,2-TRICH 6 U BENZENE 6 U TRANS-1,3-D 6 U BROMOFORM 12 U METHYL ISOB 12 U METHYL BUTY: 6 J TETRACHLORO!	HLOROPROPENE HENE (TRICHLOROETHYLENE) ROMETHANE LOROETHANE ICHLOROPROPENE UTYL KETONE L KETONE ETHENE (TETRACHLOROETHYLENE RACHLOROETHANE NE NE NE)

FOOTNOTES

REMARKS

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

DURGE	ABLE ORGANICS DATA REPORT	REGION IV ESD, ATHENS, GA.	11/00/90
*** *	PROJECT NO. 90-804 SAMPLE NO. 50206 SAMPLE TYPE: STATION ID: SD-01	PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1555 STOP: OC	* * * * * * * * * * * * * * * * * * *
**	CASE NO.: 14888 SAS NO.: ************************************	D. NO.: X748 * * * * * * * * * * * * * * * * * * *	**
1 1 1	3 U CHLOROMETHANE 3 U BROMOMETHANE 3 U VINYL CHLORIDE 3 U CHLOROETHANE 7 U METHYLENE CHLORIDE 3 U ACETONE 7 U CARBON DISULFIDE 7 U 1,1-DICHLOROETHENE(1,1-DICHLOROETHYLENE) 7 U 1,2-DICHLOROETHENE(1,1-DICHLOROETHYLENE) 7 U 1,2-DICHLOROETHENE(TOTAL) 7 U CHLOROFORM 7 U 1,2-DICHLOROETHANE 3 U METHYL ETHYL KETONE 7 U 1,1,1-TRICHLOROETHANE 7 U CARBON TETRACHLORIDE 3 U VINYL ACETATE 7 U BROMODICHLOROMETHANE	7 U 1,2-DICHLOROPROPANE 7 U CIS-1,3-DICHLOROPROPENE 7 U TRICHLOROETHENE(TRICHLOROETHYLENE) 7 U DIBROMOCHLOROMETHANE 7 U 1,1,2-TRICHLOROETHANE 7 U BÉNZENE 7 U TRANS-1,3-DICHLOROPROPENE 7 U BROMOFORM 13 U METHYL ISOBUTYL KETONE 13 U METHYL BUTYL KETONE 7 U TETRACHLOROETHENE(TETRACHLOROETHYLENE 7 U 1,1,2,2-TETRACHLOROETHANE 7 U TOLUENE 7 U CHLOROBENZENE 7 U ETHYL BENZENE 7 U STYRENE 7 U TOTAL XYLENES 25 PERCENT MOISTURE	7)

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

PURGEABLE ORGANICS DATA REPORT	SION IV ESD, ATHENS, GA.	11/06/90
*** * * * * * * * * * * * * * * * * *		* * * * * * ***
** PROJECT NO. 90-804 SAMPLE NO. 50207 SAMPLE TYPE: SO	SOIL PROG ELEM: NSF COLLECTED BY: M COHEN	**
** SOURCE: TRIDENT N. LANDFILL	CITY: JEDBERG ST: SC	**
** STATION ID: SD-02	COLLECTION START: 09/17/90 1535 STOP: 00/00	
**		**
** CASE NO.: 14888 SAS NO.:	D. NO.: X747	**
UG/KG ANALYTICAL RESULTS	UG/KG ANALYTICAL RESULTS	* * * * * * * ***
UG/KG ANALYTICAL RESULTS	OG/NG ANALYTICAL RESULTS	
12 U CHLOROMETHANE	6 U 1.2-DICHLOROPROPANE	
12 U BROMOMETHANE	6 U CIS-1,3-DICHLOROPROPENE	
12 U VINYL CHLORIDE	6 U TRICHLOROETHENE (TRICHLOROETHYLENE)	
12 U CHLOROETHANE	6 U DIBROMOCHLOROMETHANE	
6U METHYLENE CHLORIDE	6 U 1,1,2-TRICHLOROETHANE	
12 U ACETONE 6 U CARBON DISULFIDE	6 U BENZENE 6 U TRANS-1,3-DICHLOROPROPENE	
6 U 1,1-DICHLOROETHENE(1,1-DICHLOROETHYLENE)	6 U BROMOFORM	
6 U 1.1-DICHLOROETHANE	12 U METHYL ISOBUTYL KETONE	
6 U 1,1-DICHLOROETHANE 6 U 1,2-DICHLOROETHENE (TOTAL)	12 U METHYL BUTYL KETONE	
6 U CHLOROFORM	6 U TETRACHLOROETHENE(TETRACHLOROETHYLENE)	
6 U CHLOROFORM 6 U 1,2-DICHLOROETHANE	6 U 1,1,2,2-TETRACHLOROETHANE	
12 U METHYL_ETHYL_KETONE	6 U TOLUENE	
6 U 1,1,1-TRICHLOROETHANE	6 U CHLOROBENZENE	
6 U CARBON TETRACHLORIDE	6 U ETHYL BENZENE	
12 U VINYL ACETATE 6 U BROMODICHLOROMETHANE	6 U STYRENE 6 U TOTAL XYLENES	
O O DIVOMODICHENDAME LUMBE	18 PERCENT MOISTURE	
	io i Englis motorone	

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

PURGEABLE ORGANICS DATA		GION IV ESD, ATHENS,	, UA.	11/00/90
*** * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
** SOURCE: TRIDENT N. ** STATION ID: SD-03 **	LANDFILL	CITY: JE COLLECT	EDBERG ST: SC ION START: 09/17/90 1200 S	TOP: 00/00/00 ** **
** CASE NO.: 14888 *** * * * * * * * * * * * * * * * *	SAS NO.: * * * * * * * * * * * * * * * * * * *	D. NO.: * * * * * * * * * UG/KG	: X745 * * * * * * * * * * * * * * * ANALYTICAL RESULT	**
7 U 1,1-DICHLOROE	ORIDE IDE THENE(1,1-DICHLOROETHYLENE) THANE THENE (TOTAL) THANE KETONE ROETHANE HLORIDE	7 U TF 7 U DF 7 U TF 7 U BF 7 U BF 14 U ME 14 U ME 7 U TE 7 U TC 7 U CF 7 U CF 7 U CF	.2-DICHLOROPROPANE IS-1,3-DICHLOROPROPENE RICHLOROETHENE (TRICHLOROETHYL IBROMOCHLOROMETHANE 1,2-TRICHLOROETHANE ENZENE RANS-1,3-DICHLOROPROPENE ROMOFORM ETHYL ISOBUTYL KETONE ETHYL BUTYL KETONE ETHYL BUTYL KETONE ETRACHLOROETHENE (TETRACHLOROE 1,2,2-TETRACHLOROETHANE DLUENE HLOROBENZENE ITYRENE DTAL XYLENES ERCENT MOISTURE	

REMARKS

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/06/90

PURGEABLE ORG	ANICS DATA REPORT			.,,.,.,
** SOURCE:	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	SC **
** CASE NO.	: 14888 * * * * * * * * * * * * * * * * * *	SAS NO.: * * * * * * * * * * * * * * * * * * *	D. NO.: X742 * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
13 U BRO 13 U VIN 13 U CHL 7U MET 13 U ACE 7 U CAR 7 U 1,1 7 U 1,2 7 U CHL 7 U 1,2 13 U MET 7 U 1,2 13 U VIN	OROMETHANE MOMETHANE YL CHLORIDE OROETHANE HYLENE CHLORIDE TONE BON DISULFIDE -DICHLOROETHENE(1,1-DIC -DICHLOROETHENE (TOTAL) OROFORM -DICHLOROETHANE HYL ETHYL KETONE ,1-TRICHLOROETHANE BON TETRACHLORIDE YL ACETATE MODICHLOROMETHANE	•	7 U 1,2-DICHLOROPROPANE 7 U CIS-1,3-DICHLOROPROPENE 7 U TRICHLOROETHENE (TRICHLOROE 7 U DIBROMOCHLOROMETHANE 7 U BENZENE 7 U TRANS-1,3-DICHLOROPROPENE 7 U BROMOFORM 13 U METHYL ISOBUTYL KETONE 13 U METHYL BUTYL KETONE 7 U TETRACHLOROETHENE (TETRACHL 7 U 1,1,2,2-TETRACHLOROETHANE 7 U TOLUENE 7 U CHLOROBENZENE 7 U CHLOROBENZENE 7 U STYRENE 7 U TOTAL XYLENES 25 PERCENT MOISTURE	

REMARKS ***REMARKS***

^{***}FOOTNOTES***

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

DHD	GEABLE ORGANICS DATA REP	DEPORT EPA-REGION IV ESU, ATHENS, GA.					11/06/90	
*** ** **	* * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *		PROG ELEM: CITY: JEDE	NSF COLLECTED BY BERG S I START: 09/17/90 0	: MICOHEN T: SC	**	
** ** ***		SA: * * * * * * * * * * * LYTICAL RESULTS	S NO.: * * * * * * * * *	D. NO.: > * * * * * * UG/L	(737 * * * * * * * * * * * ANALYTICAL	* * * * * * * * * * * * * * * * * * *	* * * * * ***	
	10 U CHLOROMETHANE 10 U BROMOMETHANE 10 U VINYL CHLORIDE 10 U CHLOROETHANE 5U METHYLENE CHLORIDI 30U ACETONE 5 U CARBON DISULFIDE 5 U 1,1-DICHLOROETHANI 5 U 1,2-DICHLOROETHANI 5 U 1,2-DICHLOROETHANI 5 U 1,2-DICHLOROETHANI 10 U METHYL ETHYL KETOI 5 U 1,1-TRICHLOROETI 5 U CARBON TETRACHLOR: 10 U VINYL ACETATE 5 U BROMODICHLOROMETHA	E(1,1-DICHLOROETHYLENE E E (TOTAL) E NE HANE IDE)	5 U CIS- 5U TRIC 5 U DIBP 5 U 1.1.2 5 U BROM 10 U METH 10 U TETR 5 U TOLU 5 U ETHR 5 U ETHR	IS-1,3-DICHLOROPROPE NOFORM IYL ISOBUTYL KETONE IYL BUTYL KETONE RACHLOROETHENE(TETRA 2,2-TETRACHLOROETHA IENE BROBENZENE 'L BENZENE	ROETHYLENE) NE CHLOROETHYLENE)		

REMARKS

FOOTNOTES *A—AVERAGE VALUE *NA—NOT ANALYZED *NAI—INTERFERENCES *J—ESTIMATED VALUE *N—PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K—ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L—ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U—MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R—QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/06/90

PURGEABLE ORGANICS DATA REPORT	REGION IV ESD, ATTENS, GA.	11,00,30
*** * * * * * * * * * * * * * * * * *	CITY: JEDBERG ST: SC	* * * * * * * * * * * * * * * * * * *
** CASE NO.: 14888 SAS NO.: *** * * * * * * * * * * * * * * * * *	D. NO.: X736 * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
11 U CHLOROMETHANE 11 U BROMOMETHANE 11 U VINYL CHLORIDE 11 U CHLOROETHANE 5U METHYLENE CHLORIDE 11 U ACETONE 5 U CARBON DISULFIDE 5 U 1,1-DICHLOROETHENE(1,1-DICHLOROETHYLENE) 5 U 1,2-DICHLOROETHANE 5 U 1,2-DICHLOROETHANE 5 U CHLOROFORM 5 U 1,2-DICHLOROETHANE 11 U METHYL ETHYL KETONE 5 U 1,1-TRICHLOROETHANE 5 U CARBON TETRACHLORIDE 11 U VINYL ACETATE 5 U BROMODICHLOROMETHANE	5 U 1,2-DICHLOROPROPANE 5 U CIS-1,3-DICHLOROPROPENE 5 U TRICHLOROETHENE(TRICHLOROETHYLENE) 5 U DIBROMOCHLOROMETHANE 5 U 1,1,2-TRICHLOROETHANE 5 U BÉNZENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U BROMOFORM 11 U METHYL ISOBUTYL KETONE 11 U METHYL BUTYL KETONE 11 U METHYL BUTYL KETONE 5 U TETRACHLOROETHENE(TETRACHLOROETHYL 5 U 1,1,2,2-TETRACHLOROETHANE 5 U TOLUENE 5 U CHLOROBENZENE 5 U CHLOROBENZENE 5 U STYRENE 5 U TOTAL XYLENES 8 PERCENT MOISTURE	

REMARKS ***REMARKS***

^{***}FOOTNOTES***

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

SISB/SAS UNITED STATES ENVIRONMENTAL PROTECTION AGE Region IV Environmental Services Division College Station Road, Athens, Ga. 30613 ATLANTA GA

*****MEMORANDUM****

DATE: 11/07/90

Results of Extractable Organic Analysis; 90-804 TRIDENT N. LANDFILL JEDBERG SC CASE NO: 14888 SUBJECT:

FROM: Robert W. Knight

Chief, Laboratory Evaluation/Quality Assurance Section

TO: PHIL BLACKWELL

Attached are the results of analysis of samples collected as part of the subject project.

As a result of the Quality Assurance Review, certain data qualifiers may have been placed on the data. Attached is a DATA QUALIFIER REPORT which explains the reasons that these qualifiers were required.

If you have any questions please contact me.

ATTACHMENT

ORGANIC DATA QUALIFIER REPORT

Case Number 14888

Project Number 90-804 SAS Number

Site ID. Trident N. Landfill, Jedberg, SC.

Affected Samples	Compound or Fraction	Flag <u>Used</u>	Reason
<u>Volatiles</u> DX753,738,740,741 744,750,867	all positives	J	<quantitation limit<="" td=""></quantitation>
Extractables all soil samples	1,2,4-trichlorobenzene 2,4-dimethylphenol	J R	low recovery QC spike unacceptable recovery QC spike
all samples all water samples DX740,744	3-nitroaniline di-n-butylphthalate butylbenzylphthalate	R R J	unacceptable QC spike recovery unacceptable QC spike recovery <quantitation limit<="" td=""></quantitation>
DX740,741,744	all extractables except 2,4-dimethylphenol and		•
DX755	3-nitroaniline all extractables except 3-nitroaniline and	J	excessive holding time
DX738	di-n-butylphthalate di-n-octylphthalate	J J	exceeded 40CFR136 extraction holding time internal standard low
DA7 30	benzo(b/k)fluoranthene benzo(a)pyrene	J J	internal standard low internal standard low
	indeno(1,2,3-cd)pyrene dibenz(a,h)anthracene	J J	internal standard low internal standard low
DX747	benzo(g,h,i)perylene di-n-octylphthalate benzo(b/k)fluoranthene	J R R	internal standard low internal standard unacceptable internal standard unacceptable
	benzo(a)pyrene indeno(1,2,3-cd)pyrene	R R	internal standard unacceptable internal standard unacceptable
	<pre>dibenz(a,h)anthracene benzo(g,h,i)perylene</pre>	R R	internal standard unacceptable internal standard unwcceptable
Pesticides all samples all waters	beta-BHC heptachlor DDE and DDD	R J J	unacceptable QC recovery low QC spike recovery low QC spike recovery

11/06/90 EXTRACTABLE ORGANICS DATA REDORT

EXTRACTABLE ORGANICS DATA REPORT *** * * * * * * * * * * * * * * * * *	CITY: JEDBERG 51: SC *** COLLECTION START: 09/18/90 1500 STOP: 00/00/00 **
**	D. NO.: X746 ** * * * * * * * * * * * * * * * * * *
10 U PHENOL 10 U BIS(2-CHLOROETHYL) ETHER 10 U 2-CHLOROPHENOL 10 U 1,3-DICHLOROBENZENE 10 U 1,4-DICHLOROBENZENE 10 U 1,4-DICHLOROBENZENE 10 U 1,2-DICHLOROBENZENE 10 U 2-METHYLPHENOL 10 U BIS(2-CHLOROISOPROPYL) ETHER 10 U 2-METHYLPHENOL 10 U (3-AND/OR 4-)METHYLPHENOL 10 U N-NITROSODI-N-PROPYLAMINE 10 U N-NITROSODI-N-PROPYLAMINE 10 U NITROBENZENE 10 U ISOPHORONE 10 U 2,4-DIMETHYLPHENOL 10 U 2,4-DIMETHYLPHENOL 10 U 2,4-DIMETHYLPHENOL 10 U 1,2,4-TRICHLOROPHENOL 10 U 1,2,4-TRICHLOROBENZENE 10 U NAPHTHALENE 10 U 4-CHLOROAILINE 10 U 4-CHLOROAILINE 10 U 4-CHLOROBUTADIENE 10 U 4-CHLOROBUTADIENE 10 U 4-CHLOROPHENOL 10 U 2-METHYLNAPHTHALENE 10 U 4-CHLOROCYCLOPENTADIENE (HCCP) 10 U 2,4-S-TRICHLOROPHENOL 10 U 2,4,6-TRICHLOROPHENOL 50 U 2,4,5-TRICHLOROPHENOL 50 U 2,4,5-TRICHLOROPHENOL 50 U 2-NITROANILINE 10 U DIMETHYL PHTHALENE 50 U 2-NITROANILINE	50UR 3-NITROANILINE 10 U ACENAPHTHENE 50 U 2.4-DINITROPHENOL 50 U 4-NITROPHENOL 10 U DIBENZOFURAN 10 U 2.4-DINITROTOLUENE 10 U DIETHYL PHTHALATE 10 U 4-CHLOROPHENYL PHENYL ETHER 10 U 4-NITROANILINE 50 U 4-NITROANILINE 50 U 2-METHYL-4,6-DINITROPHENOL 10 U N-NITROSODIPHENYLAMINE/DIPHENYLAMINE 10 U 4-BROMOPHENYL PHENYL ETHER 10 U 4-BROMOPHENYL PHENYL ETHER 10 U HEXACHLOROBENZENE (HCB) 50 U PENTACHLOROPHENOL 10 U PHENANTHRENE 10 U ANTHRACENE 10 U ANTHRACENE 10 U FLUORANTHENE 10 U BENZYL BUTYL PHTHALATE 20 U 3,3'-DICHLOROBENZIDINE 10 U BENZYL BUTYL PHTHALATE 10 U BENZO(A)ANTHRACENE 10 U BENZO(A)ANTHRACENE 10 U DI-N-OCTYLPHTHALATE 10 U DI-N-OCTYLPHTHALATE 10 U DI-N-OCTYLPHTHALATE 10 U DI-N-OCTYLPHTHALATE 10 U DI-N-OCTYLPHTHALATE 10 U DI-N-OCTYLPHTHALATE 10 U DI-N-OCTYLPHTHALATE 10 U DI-N-OCTYLPHTHALATE 10 U DI-N-OCTYLPHTHALATE 10 U DI-N-OCTYLPHTHALATE

REMARKS ***REMARKS***

^{*}COTNOTES***

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
PROJECT NO. 90-804 SAMPLE NO. 50187 SAMPLE TYPE: GROUNDWA PROG ELEM: NSF COLLECTED BY: M COHEN STATION ID: MW-02 PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1120 STOP: 00/00/00
**
                                                                                                                                 **
                                                                                                                                 * *
                                        SAS NO.:
                                                                                                                                 * *
** CASE NO.: 14888
                                                                     D. NO.: X753
ANALYTICAL RESULTS
                                                                    UG/L
                                                                                       ANALYTICAL RESULTS
    10 U PHENOL
                                                                      50UR 3-NITROANILINE
    10 U BIS(2-CHLOROETHYL) ETHER
                                                                      10 U ACENAPHTHENE
    10 U 2-CHLOROPHENOL
                                                                      50 U 2,4-DINITROPHENOL
    10 U 1.3-DICHLOROBENZENE
                                                                      50 U 4-NITROPHENOL
    10 U 1.4-DICHLOROBENZENE
                                                                      10 U DIBENZOFURAN
                                                                     10 U 2.4-DINITROTOLUENE
10 U DIETHYL PHTHALATE
10 U 4-CHLOROPHENYL PHENYL ETHER
    10 U BÉNZYL ALCOHOL
   10 U 1.2-DICHLOROBENZENE
10 U 2-METHYLPHENOL
10 U BIS(2-CHLOROISOPROPYL) ETHER
                                                                      10 U FLUORENE
         (3-AND/OR 4-)METHYLPHÉNOL
                                                                      50 U 4-NITROANILINE
    10 U
                                                                           2-METHYL-4,6-DINITROPHENOL
N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
         N-NITROSODI-N-PROPYLAMINE
                                                                      50 Ū
    10 U
    10 U HEXACHLOROETHANE
                                                                      10 U
                                                                           4-BROMOPHENYL PHENYL ETHER
    10 U NITROBENZENE
                                                                      10 U
   10 U 1SOPHORONE
10 U 2-NITROBHENOL
10 U 2-ADIMETHYLPHENOL
50 U BENZOIC ACID
                                                                           HEXACHLOROBENZENE (HCB)
                                                                      10 U
                                                                      50 Ŭ
                                                                           PENTACHLOROPHENOL
                                                                           PHENANTHRENE
ANTHRACENE
                                                                      10 Ŭ
                                                                      10 U
    10 U BIS(2-CHLOROETHOXY) METHANE
                                                                           DI-N-BUTYLPHTHALATE FLUORANTHENE
                                                                      10UR
    10 U 2,4-DICHLOROPHENOL
                                                                      10 U
    10 U 1.2.4-TRICHLOROBENZENE
                                                                      10 Ü
                                                                           PYRENE
    10 U NAPHTHALENE
                                                                      10 Ú
                                                                           BENZYL BUTYL PHTHALATE
                                                                           3,3'-DICHLOROBENZIDINE
   10 U 4-CHLOROANILINE
                                                                      20 Ü
    10 U HEXACHLOROBUTADIENE
                                                                      10 U
                                                                           BÉNZO(A)ANTHRACENE
    10 U 4-CHLORO-3-METHYLPHENOL
                                                                      10 U
                                                                           CHRYSÈNÉ
   10 U 2-METHYLNAPHTHALENE
                                                                           BIS(2-ETHYLHEXYL) PHTHALATE
                                                                      10 U
   10 Ü
        HEXACHLOROCYCLOPENTADIENE (HCCP)
                                                                     10 U
                                                                           DI-N-OCTYLPHTHALATE
   10 U 2,4,6-TRICHLOROPHENOL
                                                                           BENZO(B AND/OR K) FLUORANTHENE
                                                                     10 U
                                                                           BENZO-A-PYRENE
   50 U 2.4.5-TRICHLOROPHENOL
                                                                      10 Ú
   10 U 2-CHLORONAPHTHALENE
                                                                     10 U INDENO (1,2,3-CD) PYRENE
10 U DIBENZO(A,H)ANTHRACENE
   50 U 2-NITROANILINE
   10 U DIMETHYL PHTHALATE
                                                                           BENZO(GHI)PÉRYLENE
         2.6-DINITROTOLUENE
```

REMARKS

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1200 STOP: 00/00/00
    PROJECT NO. 90-804 SAMPLE NO. 50188 SAMPLE TYPE:
                                                                                                                                  **
     SOURCE:
**
**
    STATION ID: MW-03
                                                                                                                                   **
                                                                                                                                  * *
                                                                                                                                  ..
   CASE NO.: 14888
                                               SAS NO.:
                                                                       D. NO.: X754
* *
ANALYTICAL RESULTS
                                                                                         ANALYTICAL RESULTS
   UG/L
                                                                     UG/L
    10 U PHENOL
                                                                       50UR 3-NITROANILINE
                                                                             ACENAPHTHENE
         BIS(2-CHLOROETHYL) ETHER
    10 U
                                                                      10 U
    10 Ū
         2-CHLOROPHENOL
                                                                       50 Ü
                                                                            2.4-DINITROPHENOL
    10 U
         1.3-DICHLOROBENZENE
                                                                       50 U
                                                                             4-NITROPHENOL
   10 U 1.4-DICHLOROBENZENE
                                                                      10 Ú
                                                                            DIBENZOFURAN
        BENZYL ALCOHOL
1,2-DICHLOROBENZENE
   10 Ŭ
                                                                      10 Ŭ
                                                                             2.4-DINITROTOLUENE
                                                                             DIETHYL PHTHALATE
   10 U
                                                                      10 U
         2-METHYLPHENOL
BIS(2-CHLOROISOPROPYL) ETHER
(3-AND/OR 4-)METHYLPHENOL
   10 U
                                                                      10 U
                                                                             4-CHLOROPHENYL PHENYL ETHER
   10 Ū
                                                                       10 Ŭ
                                                                             FLUORENE
   10 Ü
                                                                       50 U
                                                                             4-NITROANILINE
        N-NITROSODI-N-PROPYLAMINE
HEXACHLOROETHANE
                                                                            2-METHYL-4.6-DINITROPHENOL
N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
                                                                       50 Ū
   10 U
   10 U
                                                                       10 U
   10 U NITROBENZENE
                                                                             4-BROMOPHENYL PHENYL ETHER
                                                                       10 U
   10 Ŭ
         ISOPHORONE
                                                                             HEXACHLOROBENZENE (HCB)
                                                                      10 U
         2-NITROPHENOL
2,4-DIMETHYLPHENOL
BENZOIC ACID
                                                                             PENTACHLOROPHENOL
   10 U
                                                                      50 U
   10 U
                                                                       10 0
                                                                             PHENANTHRENE
                                                                             ANTHRACENE
   50 U
                                                                       10 U
   10 Ŭ
         BIS(2-CHLOROETHOXY) METHANE
2,4-DICHLOROPHENOL
                                                                             DI-N-BUTYLPHTHALATE
                                                                       10UR
                                                                             FLUORANTHENE
   10 U
                                                                       10 U
         1.2.4-TRICHLOROBENZENE
   10 II
                                                                      10 Ü
                                                                             PYRENE
         NAPHTHALENE
   10 U
                                                                       10 Ü
                                                                             BENZYL BUTYL PHTHALATE
         4-CHLOROANILINE
                                                                             3,3'-DICHLOROBENZIDINE
   10 Ŭ
                                                                       20 U
   10 U
         HEXACHLOROBUTADIENE
                                                                       10 U
                                                                             BENZO(A)ANTHRACENE
   10 II
         4-CHLORO-3-METHYLPHENOL
2-METHYLNAPHTHALENE
                                                                       10 Ü
                                                                             CHRYSENE
                                                                            BIS(2-ETHYLHEXYL) PHTHALATE
DI-N-OCTYLPHTHALATE
   10 U
                                                                      10 U
         HEXACHLOROCYCLOPENTADIENE (HCCP)
   10 U
                                                                      10 U
         2,4,6-TRICHLOROPHENOL
                                                                             BENZO(B AND/OR K)FLUORANTHENE
   10 U
                                                                       10 U
   50 U
        2,4,5-TRICHLOROPHENOL
                                                                             BENZO-A-PYRÉNE
                                                                      10 U
         2-CHLORONAPHTHALENE
                                                                            INDENO (1.2.3-CD) PYRENE
DIBENZO(A,H)ANTHRACENE
                                                                      10 U
         2-NITROANILINE
   50 U
                                                                      10 U
         DIMETHYL PHTHALATE ACENAPHTHYLENE
   10 U
                                                                             BENZO(GHI)PERYLENE
   10 U
         2.6-DINITROTOLUENE
```

REMARKS

FOOTNOTES *A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
PROJECT NO. 90-804 SAMPLE NO. 50189 SAMPLE TYPE: GROUNDWA PROG ELEM: NSF COLLECTED BY: M COHEN SOURCE: TRIDENT N. LANDFILL STATION ID: MW-04 COLLECTION START: 09/18/90 1435 STOP: 00/00/00
**
**
                                                                                                                                                          * *
                                                                                                                                                          **
* *
                                 SAS NO.:
** CASE NO.: 14888
                                                                                                                                                          **
                                                                                D. NO.: X755
UG/L
           ANALYTICAL RESULTS
                                                                                                          ANALYTICAL RESULTS
     10UJ PHENOL
                                                                                   50UR 3-NITROANILINE
    10UJ BIS(2-CHLOROETHYL) ETHER
10UJ 2-CHLOROPHENOL
                                                                                   10UJ ACENAPHTHENE
                                                                                   50UJ 2,4-DINITROPHENOL
    10UJ 2-CHLOROPHENOL
10UJ 1.3-DICHLOROBENZENE
10UJ 1.4-DICHLOROBENZENE
10UJ BENZYL ALCOHOL
10UJ 1.2-DICHLOROBENZENE
10UJ 2-METHYLPHENOL
10UJ BIS(2-CHLOROISOPROPYL) ETHER
                                                                                   50UJ 4-NITROPHENOL
                                                                                   10UJ DIBENZOFURAN
                                                                                   10UJ 2,4-DÎNITROTOLUENE
10UJ DIETHYL PHTHALATE
10UJ 4-CHLOROPHENYL PHENYL ETHER
                                                                                    10UJ
                                                                                          FLUORENE
     10UJ (3-AND/OR 4-)METHYLPHENOL
10UJ N-NITROSODI-N-PROPYLAMINE
                                                                                   50UJ
                                                                                          4-NITROANILINE
                                                                                          2-METHYL-4,6-DINITROPHENOL
N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
                                                                                   50UJ
     10UJ HEXACHLOROETHANE
                                                                                    10UJ
     10UJ NITROBENZENE
                                                                                          4-BROMOPHENYL PHENYL ETHER
                                                                                   10UJ
    10UJ ISOPHORONE
10UJ 2-NITROPHENOL
10UJ 2,4-DIMETHYLPHENOL
50UJ BENZOIC ACID
                                                                                          HEXACHLOROBENZENE (HCB)
                                                                                   10UJ
                                                                                          PENTACHLOROPHENOL
                                                                                   50UJ
                                                                                    10UJ
                                                                                          PHENANTHRENE
                                                                                          ANTHRACENE
                                                                                   1003
    10UJ BIS(2-CHLOROETHOXY) METHANE
10UJ 2.4-DICHLOROPHENOL
                                                                                          DI-N-BUTYLPHTHALATE FLUORANTHENE
                                                                                   10UR
                                                                                   10UJ
     10UJ 1.2.4-TRICHLOROBENZENE
                                                                                   10UJ
                                                                                          PYRENE
     10UJ NAPHTHALENE
                                                                                          BENZYL BUTYL PHTHALATE
                                                                                   10UJ
                                                                                          3,37-DICHLOROBENZIDINE
BENZO(A)ANTHRACENE
    10UJ 4-CHLOROANILINE
                                                                                   20UJ
     10UJ HEXACHLOROBUTADIENE
                                                                                   10UJ
    10UJ 4-CHLORO-3-METHYLPHENOL
10UJ 2-METHYLNAPHTHALENE
                                                                                    10UJ
                                                                                          CHRYSÈNÉ
                                                                                          BIS(2-ETHYLHEXYL) PHTHALATE
                                                                                   10UJ
    10UJ 2-METHYLNAPHTHALENE
10UJ HEXACHLOROCYCLOPENTADIENE (HCCP)
10UJ 2,4,6-TRICHLOROPHENOL
50UJ 2,4,5-TRICHLOROPHENOL
10UJ 2-CHLORONAPHTHALENE
50UJ 2-NITROANILINE
10UJ DIMETHYL PHTHALATE
10UJ ACENAPHTHYLENE
                                                                                   10UJ
                                                                                          DI-N-OCTYLPHTHALATE
                                                                                   1000
                                                                                          BENZO(B AND/OR K)FLUORANTHENE
                                                                                          BENZO-A-PYRENE
                                                                                   10UJ
                                                                                          INDENO (1,2,3-CD) PYRENE
DIBENZO(A,H)ANTHRACENE
                                                                                   10UJ
                                                                                   10UJ
                                                                                   10UJ
                                                                                          BENZO(GHI)PERYLENE
    10UJ 2.6-DINITROTOLUENE
```

REMARKS HOLDING TIMES EXCEEDED(40 CFR 136, OCTOBER 26, 1984) ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
PROG ELEM: NSF COLLECTED BY: M COHEN
CITY: JEDBERG ST: SC
COLLECTION START: 09/18/90 0920 STOP: 00/00/00
    PROJECT NO. 90-804 SAMPLE NO. 50190 SAMPLE TYPE: GROUNDWA
    SOURCE: TRIDENT N. LANDFILL
* *
    STATION ID: PW-01
                                                                                                                          **
                                         SAS NO.:
                                                                                                                          * *
** CASE NO.: 14888
                                                                   D. NO.: X751
UG/L
         ANALYTICAL RESULTS
                                                                 UG/L
                                                                                    ANALYTICAL RESULTS
                                                                  50UR 3-NITROANILINE
   10 U PHENOL
                                                                  10 U ACENAPHTHENE
   10 U BIS(2-CHLOROETHYL) ETHER
                                                                  50 U 2,4-DINITROPHENOL
   10 U 2-CHLOROPHENOL
                                                                  50 U 4-NITROPHENOL
   10 U 1.3-DICHLOROBENZENE
                                                                  10 U DIBENZOFURAN
   10 U 1.4-DICHLOROBENZENE
                                                                  10 U 2,4-DINITROTOLUENE
10 U DIETHYL PHTHALATE
   10 U BÉNZYL ALCOHOL
   10 U 1,2-DICHLOROBENZENE
10 U 2-METHYLPHENOL
                                                                  10 U 4-CHLOROPHENYL PHENYL ETHER
         BIS(2-CHLOROISOPROPYL) ETHER
                                                                  10 U FLUORENE
   10 U
   10 U (3-AND/OR 4-)METHYLPHENOL
                                                                  50 U 4-NITROANILINE
   10 U N-NITROSODI-N-PROPYLAMINE
                                                                  50 U 2-METHYL-4,6-DINITROPHENOL
10 U N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
   10 U HEXACHLOROETHANE
   10 U NITROBENZENE
                                                                  10 U 4-BROMOPHENYL PHENYL ETHER
                                                                  10 U HEXACHLOROBENZENE (HCB)
   10 U ISOPHORONE
   10 V 2-NITROPHENOL
10 U 2,4-DIMETHYLPHENOL
50 U BENZOIC ACID
                                                                  50 Ú
                                                                       PENTACHLOROPHENOL
                                                                  10 Ŭ
                                                                       PHENANTHRENE
                                                                       ANTHRACENE
                                                                  10 U
                                                                  10UR DI-N-BUTYLPHTHALATE
         BIS(2-CHLOROETHOXY) METHANE
   10 U
   10 U 2,4-DICHLOROPHENOL
                                                                  10 U FLUORANTHENE
   10 U 1,2,4-TRICHLOROBENZENE
                                                                  10 U
                                                                       PYRENE
   10 U NAPHTHALENE
                                                                  10 U BENZYL BUTYL PHTHALATE
                                                                  20 U 3.3'-DICHLOROBENZIDINE
   10 U 4-CHLOROANILINE
   10 U HEXACHLOROBUTADIENE
                                                                  10 Ú
                                                                       BÉNZO(A)ANTHRACENE
                                                                  10 U CHRYSENE
10 U BIS(2-ETHYLHEXYL) PHTHALATE
10 U DI-N-OCTYLPHTHALATE
   10 U 4-CHLORO-3-METHYLPHENOL
   10 U 2-METHYLNAPHTHALENE
   10 U HEXACHLOROCYCLOPENTADIENE (HCCP)
                                                                  10 U BENZO(B AND/OR K) FLUORANTHENE
10 U BENZO-A-PYRENE
   10 U 2,4,6-TRICHLOROPHENOL
   50 U 2.4.5-TRICHLOROPHENOL
                                                                  10 U INDENO (1,2,3-CD) PYRENE
10 U DIBENZO(A,H)ANTHRACENE
   10 U 2-CHLORONAPHTHALENE
   50 U 2-NITROANILINE
   10 U DIMETHYL PHTHALATE
                                                                  10 U BENZO(GHI)PÉRYLENE
   10 U 2.6-DINITROTOLUENE
```

^{***}FOOTNOTES*** *A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

^{*}R-OC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
*** PROJECT NO. 90-804 SAMPLE NO. 50191 SAMPLE TYPE: GROUNDWA PROG ELEM: NSF COLLECTED BY: M COHEN ST: SC STATION ID: PW-02 COLLECTION START: 09/18/90 1010 STOP: 00/00/00
                                                                                                                                    * *
                                                                                                                                   **
                                                                                                                                   * *
                            SAS NO.:
** CASE NO.: 14888
                                                                     D. NO.: X752
                                                                                                                                   * *
ANALYTICAL RESULTS
                                                                      UG/L
                                                                                          ANALYTICAL RESULTS
    10 U PHENOL
                                                                       50UR 3-NITROANILINE
    10 U BIS(2-CHLOROETHYL) ETHER
10 U 2-CHLOROPHENOL
                                                                       10 U ACENAPHTHENE
                                                                       50 U 2,4-DINITROPHENOL
50 U 4-NITROPHENOL
    10 U 1,3-DICHLOROBENZENE
    10 U 1.4-DICHLOROBENZENE
                                                                       10 U DIBENZOFURAN
    10 U BENZYL ALCOHOL
10 U 1,2-DICHLOROBENZENE
                                                                       10 U 2.4-DINITROTOLUENE
10 U DIETHYL PHTHALATE
    10 U 2-METHYLPHENOL
10 U BIS(2-CHLOROISOPROPYL) ETHER
10 U (3-AND/OR 4-)METHYLPHENOL
                                                                       10 U 4-CHLOROPHENYL PHENYL ETHER
10 U FLUORENE
                                                                       50 U 4-NITROANILINE
    10 U N-NITROSODI-N-PROPYLAMINE
                                                                       50 U 2-METHYL-4.6-DINITROPHENOL
10 U N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
    10 U HEXACHLOROETHANE
                                                                             4-BROMOPHENYL PHENYL ETHER
    10 U NITROBENZENE
                                                                       10 U
                                                                       10 U HEXACHLOROBENZENE (HCB)
    10 U ISOPHORONE
                                                                             PENTACHLOROPHENOL
    10 U 2-NITROPHENOL
                                                                       50 U
    10 U 2.4-DIMETHYLPHENOL
50 U BENZOIC ACID
                                                                       10 Ù
                                                                             PHENANTHRENE
ANTHRACENE
                                                                       10 U
    10 U BIS(2-CHLOROETHOXY) METHANE
                                                                       10UR DI-N-BUTYLPHTHALATE
    10 U 2,4-DICHLOROPHENOL
                                                                             FLUORANTHENE
                                                                       10 U
                                                                             PYRENE
    10 U 1,2,4-TRICHLOROBENZENE
                                                                       10 Ú
    10 U NAPHTHALENE
                                                                             BENZYL BUTYL PHTHALATE
                                                                       10 U
    10 U 4-CHLOROANILINE
                                                                             3.3'-DICHLOROBENZIDINE
    10 U HEXACHLOROBUTADIENE
                                                                       10 U BENZO(A)ANTHRACENE
                                                                       10 U CHRYSENÉ
10 U BIS(2-ETHYLHEXYL) PHTHALATE
10 U DI-N-OCTYLPHTHALATE
    10 U 4-CHLORO-3-METHYLPHENOL
10 U 2-METHYLNAPHTHALENE
    10 U HEXACHLOROCYCLOPENTADIENE (HCCP)
    10 U 2,4,6-TRICHLOROPHENOL
                                                                       10 Ú
                                                                             BENZO(B AND/OR K) FLUORANTHENE
    50 U 2,4,5-TRICHLOROPHENOL
                                                                             BENZO-A-PYRENE
    10 U 2-CHLORONAPHTHALENE
                                                                       10 U INDENO (1,2,3-CD) PYRENE
10 U DIBENZO(A,H)ANTHRACENE
    50 U 2-NITROANILINE
    10 U DIMETHYL PHTHALATE
10 U ACENAPHTHYLENE
                                                                             BENZO(GHI)PERYLENE
    10 U 2.6-DINITROTOLUENE
```

^{***}FOOTNOTES***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
** PROJECT NO. 90-804 SAMPLE NO. 50195 SAMPLE TYPE: SOIL

** SOURCE: TRIDENT N. LANDFILL

** STATION ID: SS-01

** COLLECTION START: 09/17/90 1100 STOP: 00/00/00 ***
* *
                                                                                                                                                * *
** CASE NO.: 14888
                                        SAS NO.:
                                                                           D. NO.: X740
                                                                                                                                                * *
ANALYTICAL RESULTS
                                                                            UG/KG ANALYTICAL RESULTS
   700UJ PHENOL
                                                                           3400UR 3-NITROANILINE
   700UJ BIS(2-CHLOROETHYL) ETHER
700UJ 2-CHLOROPHENOL
                                                                            700UJ ACENAPHTHENE
                                                                           3400UJ 2.4-DINITROPHENOL
   700UJ 1,3-DICHLOROBENZENE
                                                                           3400UJ 4-NITROPHENOL
  700UJ 1,3-DICHLOROBENZENE
700UJ 1,4-DICHLOROBENZENE
700UJ BENZYL ALCOHOL
700UJ 1,2-DICHLOROBENZENE
700UJ 2-METHYLPHENOL
700UJ BIS(2-CHLOROISOPROPYL) ETHER
                                                                            700UJ DIBENZOFURAN
                                                                            700UJ 2.4-DINITROTOLUENE
700UJ DIETHYL PHTHALATE
                                                                             700UJ
                                                                                    4-CHLOROPHENYL PHENYL ETHER
                                                                                    FLUORENE
                                                                            700UJ
   700UJ (3-AND/OR 4-)METHYLPHENOL
                                                                           3400UJ
                                                                                    4-NITROANILINE
   700UJ N-NITROSODI-N-PROPYLAMINE
700UJ HEXACHLOROETHANE
                                                                                    2-METHYL-4,6-DINITROPHENOL
N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
                                                                           3400UJ
                                                                            700UJ
   700UJ NITROBENZENE
                                                                            700UJ
                                                                                    4-BROMOPHENYL PHENYL ETHER
  700UJ ISOPHORONE
700UJ 2-NITROPHENOL
700UR 2,4-DIMETHYLPHENOL
3400UJ BENZOIC ACID
                                                                                    HEXACHLOROBENZENE (HCB)
                                                                            700UJ
                                                                                    PENTACHLOROPHENOL
                                                                           3400UJ
                                                                             700UJ
                                                                                    PHENANTHRENE
                                                                             700UJ
                                                                                    ANTHRACENE
                                                                            700UJ
700UJ
   700UJ BIS(2-CHLOROETHOXY) METHANE
                                                                                    DI-N-BUTYLPHTHALATE
   700UJ 2,4-DICHLOROPHENOL
                                                                                    FLUORANTHENE
   700UJ 1,2,4-TRICHLOROBENZENE
                                                                                    PYRENE
                                                                             700UJ
   700UJ NAPHTHALENE
                                                                                    BENZYL BUTYL PHTHALATE
                                                                               86J
   700UJ 4-CHLOROANILINE
                                                                           1400UJ
                                                                                    3,3'-DICHLOROBENZIDINE
   700UJ HEXACHLOROBUTADIENE
                                                                            700UJ
                                                                                    BÉNZO(A)ANTHRACENE
   700UJ 4-CHLORO-3-METHYLPHENOL
700UJ 2-METHYLNAPHTHALENE
                                                                             700UJ
                                                                                    CHRYSENE
                                                                                    BIS(2-ETHYLHEXYL) PHTHALATE
                                                                             700UJ
   700UJ HEXACHLOROCYCLOPENTADIENE (HCCP)
                                                                             700UJ
                                                                                    DI-N-OCTYLPHTHALATE
   700UJ 2,4,6-TRICHLOROPHENOL
                                                                             700UJ
                                                                                    BENZO(B AND/OR K)FLUORANTHENE
  3400UJ 2,4,5-TRICHLOROPHENOL
700UJ 2-CHLORONAPHTHALENE
                                                                             700UJ
                                                                                    BENZO-A-PYRENE
                                                                            700UJ INDENO (1,2,3-CD) PYRENE
700UJ DIBENZO(A,H)ANTHRACENE
  3400UJ 2-NITROANILINE
  700UJ DIMETHYL PHTHALATE
700UJ ACENAPHTHYLENE
                                                                            700UJ BENZO(GHI)PERYLENE
                                                                                   PERCENT MOISTURE
   700UJ
          2.6-DINITROTOLUENE
```

REMARKS EXCESSIVE HOLDING TIME ***REMARKS***

^{*}A-AVERAGE *ALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
     PROJECT NO. 90-804 SAMPLE NO. 50196 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN **
SOURCE: TRIDENT N. LANDFILL CITY: JEDBERG ST: SC **
STATION ID: SS-02 COLLECTION START: 09/18/90 1120 STOP: 00/00/00 **
* *
** CASE NO.: 14888 SAS NO.: D. NO.: X749 ***
            ANALYTICAL RESULTS
                                                                                 UG/KG ANALYTICAL RESULTS
   730 U PHENOL
                                                                                3600UR 3-NITROANILINE
   730 U BIS(2-CHLOROETHYL) ETHER
                                                                                 730 U ACENAPHTHENE
   730 U 2-CHLOROPHENOL
                                                                                3600 U 2,4-DINITROPHENOL
                                                                                3600 U 4-NITROPHENOL
730 U DIBENZOFURAN
   730 U 1.3-DICHLOROBENZENE
   730 U 1.4-DICHLOROBENZENE
   730 U BENZYL ALCOHOL
730 U 1.2-DICHLOROBENZENE
730 U 1.2-DICHLOROBENZENE
730 U 2-METHYLPHENOL
730 U BIS(2-CHLOROISOPROPYL) ETHER
730 U (3-AND/OR 4-)METHYLPHENOL
                                                                                 730 U 2,4-DINITROTOLUENE
730 U DIETHYL PHTHALATE
730 U 4-CHLOROPHENYL PHENYL ETHER
                                                                                  730 U FLUORENE
                                                                                3600 U 4-NITROANILINE
                                                                                3600 U 2-METHYL-4,6-DINITROPHENOL
730 U N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
   730 U N-NITROSODI-N-PROPYLAMINE
730 U HEXACHLOROETHANE
   730 U NITROBENZENE
                                                                                          4-BROMOPHENYL PHENYL ETHER
                                                                                 730 U
  730 U ISOPHORONE
730 U 2-NITROPHENOL
730UR 2,4-DIMETHYLPHENOL
3600 U BENZOIC ACID
                                                                                  730 U HEXACHLOROBENZENE (HCB)
                                                                                3600 U
                                                                                          PENTACHLOROPHENOL
                                                                                 730 U
730 U
                                                                                          PHENANTHRENE
                                                                                          ANTHRACENE
   730 U BIS(2-CHLOROETHOXY) METHANE
730 U 2,4-DICHLOROPHENOL
                                                                                          DI-N-BUTYLPHTHALATE FLUORANTHENE
                                                                                 730 Ŭ
                                                                                  730 Ŭ
   730UJ 1,2,4-TRICHLOROBENZENE
                                                                                 730 U
730 U
                                                                                          PYRENE
   730 U NAPHTHALENE
                                                                                          BENZYL BUTYL PHTHALATE
                                                                                          3.3'-DICHLOROBENZIDINE
BENZO(A)ANTHRACENE
   730 U 4-CHLOROANILINE
                                                                                1500 U
   730 U HEXACHLOROBUTADIENE
                                                                                 730 U
   730 U 4-CHLORO-3-METHYLPHENOL
730 U 2-METHYLNAPHTHALENE
                                                                                  730 Ū
                                                                                          CHRYSÈNÉ
                                                                                          BIS(2-ETHYLHEXYL) PHTHALATE
                                                                                  730 U
   730 U HEXACHLOROCYCLOPENTADIENE (HCCP)
                                                                                          DI-N-OCTYLPHTHALATE
                                                                                  730 U
  730 U 2,4,6-TRICHLOROPHENOL
3600 U 2,4,5-TRICHLOROPHENOL
730 U 2-CHLORONAPHTHALENE
                                                                                  730 U
                                                                                          BENZO(B AND/OR K)FLUORANTHENE
                                                                                  730 U BENZO-A-PYRENE
                                                                                 730 U INDENO (1.2.3-CD) PYRENE
730 U DIBENZO(A,H)ANTHRACENE
  3600 U 2-NITROANILINE
   730 U DIMETHYL PHTHALATE
730 U ACENAPHTHYLENE
                                                                                 730 U BENZO(GHI)PÉRYLENE
                                                                                     10 PERCENT MOISTURE
   730 U
           2.6-DINITROTOLUENE
```

^{***}FOOTNOTES*** *A-AVERAGE *ALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

FOOTNOTES
*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*A-AVERAGE VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
**U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
**R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
PROJECT NO. 90-804 SAMPLE NO. 50198 SAMPLE TYPE: SOIL PROGELEM: NSF COLLECTED BY: M COHEN STATION ID: SS-04 STORE COLLECTION START: 09/17/90 1020 STOP: 00/00/00
                                                                                                                                                  * *
UG/KG ANALYTICAL RESULTS
                                                                             UG/KG ANALYTICAL RESULTS
   780 U PHENOL
780 U BIS(2-CHLOROETHYL) ETHER
                                                                             3800UR 3-NITROANILINE
                                                                             780 U ACENAPHTHENE
   780 U 2-CHLOROPHENOL
                                                                             3800 U 2.4-DINITROPHENOL
   780 U 1,3-DICHLOROBENZENE
                                                                             3800 U 4-NITROPHENOL
   780 U 1.4-DICHLOROBENZENE
                                                                              780 U DIBENZOFURAN
                                                                             780 U 2.4-DINITROTOLUENE
780 U DIETHYL PHTHALATE
780 U 4-CHLOROPHENYL PHENYL ETHER
780 U FLUORENE
   780 U BENZYL ALCOHOL
   780 U 1,2-DICHLOROBENZENE
780 U 2-METHYLPHENOL
780 U BIS(2-CHLOROISOPROPYL) ETHER
780 U (3-AND/OR 4-)METHYLPHENOL
                                                                             3800 U
                                                                                     4-NITROANILINE
   780 U N-NITROSODI-N-PROPYLAMINE
780 U HEXACHLOROETHANE
                                                                              800 U 2-MÊTHYL-4.6-DINITROPHENOL
780 U N-NITROSODÍPHENYLAMINE/DIPHENYLAMINE
                                                                             3800 U
                                                                                      4-BROMOPHENYL PHENYL ETHER
   780 U NITROBENZENE
   780 U ISOPHORONE
                                                                                     HEXACHLOROBENZENE (HCB)
                                                                              780 U
  780 U 2-NITROPHENOL
780UR 2,4-DIMETHYLPHENOL
3800 U BENZOIC ACID
                                                                                     PENTACHLOROPHENOL
                                                                             3800 U
                                                                              780 Ŭ
780 U
                                                                                     PHENANTHRENE
ANTHRACENE
   780 U BIS(2-CHLOROETHOXY) METHANE
                                                                              780 Ŭ
                                                                                     DI-N-BUTYLPHTHALATE
   780 U 2,4-DICHLOROPHENOL
                                                                              780 U
                                                                                     FLUORANTHENE
   780UJ 1.2.4-TRICHLOROBENZENE
                                                                              780 U
                                                                                     PYRENE
   780 U NAPHTHALENE
                                                                              780 Ú
                                                                                     BENZYL BUTYL PHTHALATE
   780 U 4-CHLOROANILINE
                                                                             1600 U
                                                                                     3.3'-DICHLOROBENZIDINE
   780 U HEXACHLOROBUTADIENE
                                                                              780 U
                                                                                     BÉNZO(A)ANTHRACENE
                                                                                     CHRYSENE
BIS(2-ETHYLHEXYL) PHTHALATE
DI-N-OCTYLPHTHALATE
BENZO(B AND/OR K)FLUORANTHENE
   780 U 4-CHLORO-3-METHYLPHENOL
780 U 2-METHYLNAPHTHALENE
                                                                              780 U
                                                                              780 U
   780 U HEXACHLOROCYCLOPENTADIENE (HCCP)
780 U 2.4.6-TRICHLOROPHENOL
                                                                              780UJ
                                                                              780UJ
 3800 U 2,4,5-TRICHLOROPHENOL
780 U 2-CHLORONAPHTHALENE
3800 U 2-NITROANILINE
                                                                                     BENZO-A-PYRENE
                                                                              780UJ
                                                                             780UJ INDENO (1,2,3-CD) PYRENE
780UJ DIBENZO(A,H)ANTHRACENE
780UJ BENZO(GHI)PERYLENE
   780 U DIMETHYL PHTHALATE
780 U ACENAPHTHYLENE
                                                                                 15 PERCENT MOISTURE
   780 U 2.6-DINITROTOLUENE
```

^{***}FOOTNOTES***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
PROJECT NO. 90-804 SAMPLE NO. 50199 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN STATION ID: SS-05 PROGENERS ST: SC COLLECTION START: 09/17/90 1245 STOP: 00/00/00
**
                                                                                                                                                                   **
* *
                                                SAS NO.:
** CASE NO.: 14888
                                                                                    D. NO.: X743
                                                                                                                                                                   * *
UG/KG ANALYTICAL RESULTS
                                                                                       UG/KG ANALYTICAL RESULTS
   730 U PHENOL
                                                                                      3500UR 3-NITROANILINE
    730 U BIS(2-CHLOROETHYL) ETHER
                                                                                      730 U ACENAPHTHENE
    730 U 2-CHLOROPHENOL
730 U 1,3-DICHLOROBENZENE
                                                                                      3500 U 2,4-DINITROPHENOL
                                                                                     3500 U 4-NITROPHENOL
730 U DIBENZOFURAN
   730 U 1,3-DICHLOROBENZENE
730 U 1,4-DICHLOROBENZENE
730 U BENZYL ALCOHOL
730 U 1,2-DICHLOROBENZENE
730 U 2-METHYLPHENOL
730 U BIS(2-CHLOROISOPROPYL) ETHER
                                                                                       730 U 2.4-DINITROTOLUENE
730 U DIETHYL PHTHALATE
730 U 4-CHLOROPHENYL PHENYL ETHER
730 U FLUORENE
   730 U (3-AND/OR 4-)METHYLPHÉNOL
730 U N-NITROSODI-N-PROPYLAMINE
                                                                                      3500 U 4-NITROANILINE
                                                                                      3500 U 2-METHYL-4,6-DINITROPHENOL
730 U N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
 730 U HEXACHLOROETHANE
730 U HEXACHLOROETHANE
730 U NITROBENZENE
730 U ISOPHORONE
730 U 2-NITROPHENOL
730UR 2.4-DIMETHYLPHENOL
3500 U BENZOIC ACID
                                                                                       730 U 4-BROMOPHENYL PHENYL ETHER
                                                                                       730 U HEXACHLOROBENZENE (HCB)
                                                                                      3500 Ŭ
                                                                                               PENTACHLOROPHENOL
                                                                                       730 U
730 U
                                                                                               PHENANTHRENE
                                                                                               ANTHRACENE
   730 U BIS(2-CHLOROETHOXY) METHANE
                                                                                       730 Ŭ
                                                                                               DI-N-BUTYLPHTHALATE
   730 U 2,4-DICHLOROPHENOL
                                                                                       730 Ŭ
                                                                                               FLUORANTHENE
   730UJ 1.2,4-TRICHLOROBENZENE
                                                                                       730 U
                                                                                               PYRENE
   730 U NAPHTHALENE
                                                                                       730 Ŭ
                                                                                               BENZYL BUTYL PHTHALATE
                                                                                               3.3'-DICHLOROBENZIDINE
BENZO(A)ANTHRACENE
   730 U 4-CHLOROANILINE
                                                                                      1500 U
   730 U HEXACHLOROBUTADIENE
                                                                                       730 U
   730 U 4-CHLORO-3-METHYLPHENOL
730 U 2-METHYLNAPHTHALENE
730 U HEXACHLOROCYCLOPENTADIENE (HCCP)
                                                                                       730 Ü
730 Ü
                                                                                               CHRYSENE
                                                                                               BIS(2-ETHYLHEXYL) PHTHALATE
DI-N-OCTYLPHTHALATE
                                                                                       730 U
 730 U HEXACHLOROCYCLOPENTADII
730 U 2,4,6-TRICHLOROPHENOL
730 U 2,4,5-TRICHLOROPHENOL
730 U 2-CHLORONAPHTHALENE
3500 U 2-NITROANILINE
730 U DIMETHYL PHTHALATE
730 U ACENAPHTHYLENE
730 U 2,6-DINITROTOLUENE
                                                                                       730 Ŭ
                                                                                               BENZO(B AND/OR K)FLUORANTHENE
                                                                                       730 U BENZO-A-PYRENE
                                                                                       730 U INDENO (1,2,3-CD) PYRENE
730 U DIBENZO(A,H)ANTHRACENE
                                                                                       730 U BENZO(GHI)PERYLENE
                                                                                            9 PERCENT MOISTURE
```

^{***}FOOTNOTES***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
PROJECT NO. 90-804 SAMPLE NO. 50200 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1125 STOP: 00/00/00
**
* *
**
                                    SAS NO.:
** CASE NO.: 14888
                                                                        D. NO.: X741
UG/KG ANALYTICAL RESULTS
    UG/KG ANALYTICAL RESULTS
  860UJ PHENOL
860UJ BIS(2-CHLOROETHYL) ETHER
                                                                         4200UR 3-NITROANILINE
860UJ ACENAPHTHENE
   860UJ 2-CHLOROPHENOL
                                                                         4200UJ 2,4-DINITROPHENOL
   860UJ 1,3-DICHLOROBENZENE
                                                                         4200UJ 4-NITROPHENOL
  860UJ 1,4-DICHLOROBENZENE
860UJ BENZYL ALCOHOL
                                                                          860UJ DIBENZOFURAN
                                                                          860UJ 2,4-DINITROTOLUENE
   860UJ 1,2-DICHLOROBENZENE
                                                                          860UJ DIETHYL PHTHALATE
  860UJ 2-METHYLPHENOL
860UJ BIS(2-CHLOROISOPROPYL) ETHER
860UJ (3-AND/OR 4-)METHYLPHENOL
860UJ N-NITROSODI-N-PROPYLAMINE
                                                                          860UJ 4-CHLOROPHENYL PHENYL ETHER
                                                                          860UJ FLUORENE
                                                                                 4-NITROANILINE
                                                                         4200UJ
                                                                         4200UJ 2-METHYL-4.6-DINITROPHENOL
860UJ N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
   860UJ HEXACHLOROETHANE
   860UJ NITROBENZENE
                                                                          860UJ 4-BROMOPHENYL PHENYL ETHER
 860UJ ISOPHORONE
860UJ 2-NITROPHENOL
860UR 2,4-DIMETHYLPHENOL
420UJ BENZOIC ACID
860UJ BIS(2-CHLOROPHENOL)
860UJ 2,4-DICHLOROPHENOL
860UJ 1,2,4-TRICHLOROBENZENE
                                                                          860UJ HEXACHLOROBENZENE (HCB)
                                                                         4200UJ PENTACHLOROPHENOL
                                                                          860UJ PHENANTHRENE
                                                                          860UJ
                                                                                 ANTHRACENE
                                                                                 DI-N-BUTYLPHTHALATE
                                                                          860UJ
                                                                                 FLUORANTHENE
                                                                          860UJ
                                                                          860UJ
                                                                                 PYRENE
  860UJ NAPHTHALENE
                                                                          860UJ BENZYL BUTYL PHTHALATE
                                                                         1700UJ 3.3'-DICHLOROBENZIDINE
  860UJ 4-CHLOROANILINE
  860UJ HEXACHLOROBUTADIENE
                                                                          860UJ BÉNZO(A)ANTHRACENE
 860UJ 4-CHLORO-3-METHYLPHENOL
860UJ 2-METHYLNAPHTHALENE
860UJ HEXACHLOROCYCLOPENTADIENE (HCCP)
860UJ 2,4,6-TRICHLOROPHENOL
4200UJ 2,4,5-TRICHLOROPHENOL
                                                                          860UJ
                                                                                 CHRYSENE
                                                                                 BIS(2-ETHYLHEXYL) PHTHALATE
                                                                          860UJ
                                                                                 DI-N-OCTYLPHTHALATE
                                                                          860UJ
                                                                          860UJ
                                                                                 BENZO(B AND/OR K)FLUORANTHENE
                                                                                 BENZO-A-PYRENE
                                                                          860UJ
  860UJ 2-CHLORONAPHTHALENE
                                                                          860UJ INDENO (1,2,3-CD) PYRENE
860UJ DIBENZO(A,H)ANTHRACENE
860UJ BENZO(GHI)PERYLENE
  4200UJ 2-NITROANILINE
  860UJ DIMETHYL PHTHALATE
  860UJ ACENAPHTHYLENE
                                                                             24 PERCENT MOISTURE
  860UJ 2.6-DINITROTOLUENE
```

REMARKS EXCESSIVE HOLDING TIME ***REMARKS***

FOOTNOTES *A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

SAMPLE AND ANALYSIS MANAGEMENT SYSTEM

SAMPLE AND ANALYSIS MANAGEMENT SYSTEM EPA-REGION IV ESD, ATHENS, GA.	* * * * * * * * * * * * * * * * * * *	.AS NO.: D. NO.: X750	4000UR 3-NITROANILINE 4000 U 2.4-DINITROPHENOL 4000 U 2.4-DINITROPHENOL 820 U DIBENZOPRAN 820 U DIENZOPRAN 820 U DIENZOPRAN 820 U DIETHYL PHHALATE 820 U DIETHYL PHHALATE 820 U A-CHLOROPHENYL PHENYL ETHER 820 U A-CHLOROPHENYL PHENYL ETHER 820 U A-MITROPHENYL PHENYL ETHER 820 U A-MITROPHENYL PHENYL ETHER 820 U HEXACHLOROPHENOL 820 U HEXACHLOROPHENOL 820 U HEXACHLOROPHENOL 820 U HEXACHLOROPHENOL 820 U DI-N-BUTYLPHTHALATE 820 U DI-N-BUTYLPHTHALATE 820 U DI-N-BUTYLPHTHALATE 820 U CHRYSENE 820 U GRNZOA) NITHRACENE 820 U GRNZOA) NITHRACENE 820 U GRNZOA) NITHRACENE 820 U GRNZOA) NITHRACENE 820 U GRNZOA) NITHRACENE 820 U GRNZOA) NITHRACENE 820 U GRNZOA) NITHRACENE 820 U GRNZOA) NITHRACENE 820 U GRNZOA) NITHRACENE 820 U GRNZOA HJANTHRACENE 820 U BENZOA HJANTHRACENE
	EXTRACTABLE ORGANICS DATA REPORT ** * * * * * * * * * * * * * * * * *	** CASE NO.: 1488 **	820 U PHENOL 820 U 1,3-DICHLOROETHYL) ETHER 820 U 2-CHLOROBHENOL 820 U 1,3-DICHLOROBENZENE 820 U 1,3-DICHLOROBENZENE 820 U 1,2-DICHLOROBENZENE 820 U 2-METHYLPHENOL 820 U 2-METHYLPHENOL 820 U 3-AND/OR 4-)METHYLPHENOL 820 U N-NITROSODI-N-PROPYLAMINE 820 U N-NITROSODI-N-PROPYLAMINE 820 U N-NITROSODI-N-PROPYLAMINE 820 U N-NITROPHENOL 820 U 2-NITROPHENOL 820 U 2-A-DIMETHYLPHENOL 820 U 2,4-DIMETHYLPHENOL 820 U 2,4-DIMETHYLPHENOL 820 U 2,4-DICHLOROBENZENE 820 U APPHTHALENE 820 U 4-CHLOROBITADIENE 820 U 4-CHLOROBITADIENE 820 U 4-CHLOROBITADIENE 820 U 2-METHYLPHENOL 820 U 2-METHYLPHENOL 820 U 2-METHYLNAPHTHALENE 820 U 2-METHYLNAPHTHALENE 820 U 2-METHYLNAPHTHALENE 820 U 2-METHYLNAPHTHALENE 820 U 2-METHOROROPHENOL 820 U 2-METHYLNAPHTHALENE 820 U 2-METHYLNAPHTHALENE 820 U 2-MITROPHENOL 820 U 2-MITROPHENOL 820 U 2-MITROPHENOL 820 U 2-MITROPHENOL 820 U 2-MITROPHENOL 820 U 2-MITROPHENOL 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE 820 U 2-CHLOROMAPHTHALENE

FOOTNOTES
*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*A-AVERAGE VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
**U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
**R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1225 STOP: 00/00/00
     PROJECT NO. 90-804 SAMPLE NO. 50202 SAMPLE TYPE: SOIL
     SOURCE: TRIDENT N. LANDFILL
STATION ID: SB-03
**
                                                                                                                                          * *
                                                                                                                                          **
* *
                                                                                                                                          * *
                                          SAS NO.:
** CASE NO.: 14888
                                                                       D. NO.: X866
                                                                                                                                          * *
ANALYTICAL RESULTS
                                                                         UG/KG
                                                                                               ANALYTICAL RESULTS
   780 U PHENOL
780 U BIS(2-CHLOROETHYL) ETHER
                                                                        3800UR 3-NITROANILINE
780 U ACENAPHTHENE
   780 U 2-CHLOROPHENOL
                                                                         3800 Ŭ
                                                                                 2,4-DINITROPHENOL
   780 U 1,3-DICHLOROBENZENE
                                                                         3800 U
                                                                                 4-NITROPHENOL
                                                                                DIBENZOFURAN
   780 U 1.4-DICHLOROBENZENE
                                                                          780 U
                                                                                 2.4-DINITROTOLUENE
   780 U BÉNZYL ALCOHOL
                                                                          780 Ŭ
   780 U 1,2-DICHLOROBENZENE
                                                                          780 U DIETHYL PHTHALATE
   780 U 2-METHYLPHENOL
780 U BIS(2-CHLOROISOPROPYL) ETHER
780 U (3-AND/OR 4-)METHYLPHENOL
780 U N-NITROSODI-N-PROPYLAMINE
                                                                          780 Ŭ
                                                                                 4-CHLOROPHENYL PHENYL ETHER
                                                                                 FLUORENE
                                                                          780 U
                                                                                 4-NITROANILINE
                                                                         3800 U
                                                                        3800 U 2-METHYL-4.6-DINITROPHENOL
780 U N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
   780 U HEXACHLOROETHANE
   780 U NITROBENZENE
                                                                                 4-BROMOPHENYL PHENYL ETHER
   780 U ISOPHORONE
                                                                          780 U HEXACHLOROBENZENE (HCB)
 780 U 2-NITROPHENOL
780 U 2-NITROPHENOL
780 U 2,4-DIMETHYLPHENOL
3800 U BENZOIC ACID
780 U BIS(2-CHLOROETHOXY) METHANE
780 U 2,4-DICHLOROPHENOL
780 U 4,4-DICHLOROPHENOL
                                                                                 PENTACHLOROPHENOL
                                                                         3800 U
                                                                          780 Ú
                                                                                 PHENANTHRENE
                                                                                 ANTHRACENE
                                                                          780 U
                                                                                 DI-N-BUTYLPHTHALATE
                                                                          780 U
                                                                          780 Ŭ
                                                                                 FLUORANTHENE
   780UJ 1,2,4-TRICHLOROBENZENE
                                                                          780 Ŭ
                                                                                 PYRENE
   780 U NAPHTHALENE
                                                                          780 U
                                                                                 BENZYL BUTYL PHTHALATE
   780 U 4-CHLOROANILINE
                                                                         1600 U
                                                                                 3.3'-DICHLOROBENZIDINE
   780 U HEXACHLOROBUTADIENE
                                                                          780 U
                                                                                 BENZO(A)ANTHRACENE
                                                                          780 Ŭ
   780 U 4-CHLORO-3-METHYLPHENOL
780 U 2-METHYLNAPHTHALENE
                                                                                 CHRYSÈNÉ
                                                                                BIS(2-ETHYLHEXYL) PHTHALATE
DI-N-OCTYLPHTHALATE
                                                                          780 U
   780 U HEXACHLOROCYCLOPENTADIENE (HCCP)
                                                                          780 U
   780 U 2.4.6-TRICHLOROPHENOL
                                                                                 BENZO(B AND/OR K) FLUORANTHENE
                                                                          780 U
  3800 U 2,4,5-TRICHLOROPHENOL
                                                                                 BENZO-A-PYRENE
                                                                         780 U
   780 U 2-CHLORONAPHTHALENE
                                                                         780 U INDENO (1,2,3-CD) PYRENE
780 U DIBENZO(A,H)ANTHRACENE
  3800 U 2-NITROANILINE
   780 U DIMETHYL PHTHALATE
                                                                         780 U BENZO(GHI)PERYLENE
  780 U ACENAPHTHYLENE
780 U 2,6-DINITROTOLUENE
                                                                            15 PERCENT MOISTURE
```

^{***}FOOTNOTES***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
PROJECT NO. 90-804 SAMPLE NO. 50203 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1035 STOP: 00/00/00
**
                                                                                                                                  * *
                            SAS NO.:
** CASE NO.: 14888
                                                                   D. NO.: X739
                                                                                                                                  * *
UG/KG
          ANALYTICAL RESULTS
                                                                     UG/KG ANALYTICAL RESULTS
                                                                    4000UR 3-NITROANILINE
830 U ACENAPHTHENE
   830 U PHENOL
   830 U BIS(2-CHLOROETHYL) ETHER
   830 U 2-CHLOROPHENOL
                                                                    4000 U 2,4-DINITROPHENOL
  830 U 1,3-DICHLOROBENZENE
830 U 1,4-DICHLOROBENZENE
                                                                    4000 U 4-NITROPHENOL
                                                                     830 U DIBENZOFURAN
   830 U BÉNZYL ALCOHOL
                                                                     830 U 2.4-DINITROTOLUENE
  830 U 1,2-DICHLOROBENZENE
830 U 2-METHYLPHENOL
                                                                     830 U DIETHYL PHTHALATE
830 U 4-CHLOROPHENYL PHENYL ETHER
  830 U BIS(2-CHLOROISOPROPYL) ETHER
830 U (3-AND/OR 4-)METHYLPHENOL
                                                                     830 U FLUORENE
                                                                    4000 U 4-NITROANILINE
                                                                    4000 U 2-METHYL-4.6-DINITROPHENOL
830 U N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
   830 U N-NITROSODI-N-PROPYLAMINE
  830 U HEXACHLOROETHANE
830 U NITROBENZENE
                                                                            4-BROMOPHENYL PHENYL ETHER
                                                                     830 U
   830 U ISOPHORONE
                                                                     830 U HEXACHLOROBENZENE (HCB)
 830 U 2-NITROPHENOL
830UR 2,4-DIMETHYLPHENOL
4000 U BENZOIC ACID
830 U BIS(2-CHLOROETHOXY) METHANE
                                                                            PENTACHLOROPHENOL
                                                                    4000 U
                                                                            PHENANTHRENE
ANTHRACENE
DI-N-BUTYLPHTHALATE
                                                                     830 U
                                                                     830 U
                                                                     830 U
  830 U 2,4-DICHLOROPHENOL
                                                                            FLUORANTHENE
                                                                     830 U
  830UJ 1,2,4-TRICHLOROBENZENE
830 U NAPHTHALENE
                                                                     830 U
                                                                            PYRENE
                                                                            BENZYL BUTYL PHTHALATE
                                                                     830 U
                                                                            3.3'-DICHLOROBENZIDINE
  830 U 4-CHLOROANILINE
                                                                    1700 U
  830 U HEXACHLOROBUTADIENE
                                                                            BENZO(A)ANTHRACENE
                                                                     830 Ú
  830 U 4-CHLORO-3-METHYLPHENOL
830 U 2-METHYLNAPHTHALENE
                                                                     830 U
                                                                            CHRYSÈNÉ
                                                                            BIS(2-ETHYLHEXYL) PHTHALATE
DI-N-OCTYLPHTHALATE
                                                                     830 U
  830 U HEXACHLOROCYCLOPENTADIENE (HCCP)
                                                                     830 Ŭ
  830 U 2,4,6-TRICHLOROPHENOL
                                                                     830 U
                                                                            BENZO(B AND/OR K)FLUORANTHENE
  4000 U 2,4,5-TRICHLOROPHENOL
                                                                     830 U
                                                                            BENZO-A-PYRENE
                                                                     830 U INDENO (1,2,3-CD) PYRENE
830 U DIBENZO(A,H)ANTHRACENE
  830 U 2-CHLORONAPHTHALENE
  4000 U 2-NITROANILINE
  830 U DIMETHYL PHTHALATE
830 U ACENAPHTHYLENE
                                                                     830 U BENZO(GHI)PERYLENE
                                                                        20 PERCENT MOISTURE
  830 U 2,6-DINITROTOLUENE
```

^{***}FOOTNOTES***

^{*}A-AVERAGE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*A-AVERAGE VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
     PROJECT NO. 90-804 SAMPLE NO. 50204 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN ST: SC CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1310 STOP: 00/00/00
                                                                                                                                                                             * *
UG/KG ANALYTICAL RESULTS UG/KG ANALYTICAL RESULTS
    900UJ PHENOL
                                                                                           4400UR 3-NITROANILINE
   900UJ BIS(2-CHLOROETHYL) ETHER
900UJ 2-CHLOROPHENOL
900UJ 1.3-DICHLOROBENZENE
                                                                                            900UJ ACENAPHTHENE
                                                                                           4400UJ 2,4-DINITROPHENOL
                                                                                           4400UJ 4-NITROPHENOL
900UJ DIBENZOFURAN
    900UJ 1,4-DICHLOROBENZENE
   900UJ BENZYL ALCOHOL
900UJ 1,2-DICHLOROBENZENE
900UJ 2-METHYLPHENOL
900UJ BIS(2-CHLOROISOPROPYL) ETHER
                                                                                            900UJ 2,4-DINITROTOLUENE
900UJ DIETHYL PHTHALATE
900UJ 4-CHLOROPHENYL PHENYL ETHER
900UJ FLUORENE
    900UJ (3-AND/OR 4-)METHYLPHÉNOL
                                                                                           4400UJ 4-NITROANILINE
  900UJ (3-AND/OR 4-)METHYLPHENOL
900UJ N-NITROSODI-N-PROPYLAMINE
900UJ HEXACHLOROETHANE
900UJ NITROBENZENE
900UJ ISOPHORONE
900UJ 2-NITROPHENOL
900UR 2,4-DIMETHYLPHENOL
4400UJ BENZOIC ACID
900UJ BIS(2-CHLOROETHOXY) METHANE
                                                                                           4400UJ 2-METHYL-4,6-DINITROPHENOL
900UJ N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
                                                                                                      4-BROMOPHENYL PHENYL ETHER
                                                                                             900UJ
                                                                                             900UJ HEXACHLOROBENZENE (HCB)
                                                                                           4400UJ PENTACHLOROPHENOL
                                                                                             900UJ
                                                                                                      PHENANTHRENE
                                                                                             900UJ ANTHRACENE
                                                                                             900UJ DI-N-BUTYLPHTHALATE
   900UJ 2.4-DICHLOROPHENOL
900UJ 1,2,4-TRICHLOROBENZENE
                                                                                            900UJ FLUORANTHENE
900UJ PYRENE
   900UJ NAPHTHALENE
                                                                                              110J BENZYL BUTYL PHTHALATE
 900UJ NAPHTHALENE
900UJ 4-CHLOROANILINE
900UJ HEXACHLOROBUTADIENE
900UJ 4-CHLORO-3-METHYLPHENOL
900UJ 2-METHYLNAPHTHALENE
900UJ 2,4,6-TRICHLOROPHENOL
900UJ 2,4,5-TRICHLOROPHENOL
900UJ 2-CHLORONAPHTHALENE
4400UJ 2-NITROANILINE
900UJ DIMETHYL PHTHALATE
900UJ ACENAPHTHYLENE
                                                                                           1800UJ 3,3'-DICHLOROBENZIDINE
                                                                                             900UJ
                                                                                                      BÉNZO(A)ANTHRACENE
                                                                                             900UJ CHRYSENÉ
                                                                                                      BIS(2-ETHYLHEXYL) PHTHALATE
DI-N-OCTYLPHTHALATE
                                                                                             90000
                                                                                             900ŬĴ
                                                                                            900UJ BENZO(B AND/OR K)FLUORANTHENE
900UJ BENZO-A-PYRENE
                                                                                            900UJ INDENO (1,2,3-CD) PYRENE
900UJ DIBENZO(A,H)ANTHRACENE
                                                                                             900UJ BENZO(GHI)PERYLENE
   900UJ ACENAPHTHYLENE
900UJ 2,6-DINITROTOLUENE
                                                                                                27 PERCENT MOISTURE
```

REMARKS EXCESSIVE HOLDING TIME ***REMARKS***

FOOTNOTES *COUNDIES***

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
PROJECT NO. 90-804 SAMPLE NO. 50205 SAMPLE TYPE: SOIL
                                                                 PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1445 STOP: 00/00/00
    SOURCE: TRIDENT N. LANDFILL
* *
                                                                                                                         * *
**
    STATION ID: SB-06
                                                                                                                         **
                                    SAS NO.:
**
  CASE NO.: 14888
                                                               D. NO.: X867
                                                                                                                         * *
UG/KG
         ANALYTICAL RESULTS
                                                                UG/KG
                                                                                   ANALYTICAL RESULTS
  810 U PHENOL
                                                               3900UR 3-NITROANILINE
  810 U BIS(2-CHLOROETHYL) ETHER
                                                                810 U ACENAPHTHENE
  810 U
         2-CHLOROPHENOL
                                                               3900 U 2,4-DINITROPHENOL
  810 U
         1.3-DICHLOROBENZENE
                                                               3900 U 4-NITROPHENOL
  810 U 1.4-DICHLOROBENZENE
                                                                810 U DIBENZOFURAN
  810 U
         BÉNZYL ALCOHOL
                                                                810 Ŭ
                                                                      2.4-DINITROTOLUENE
  810 U 1,2-DICHLOROBENZENE
                                                                810 U DIETHYL PHTHALATE
                                                                810 U 4-CHLOROPHENYL PHENYL ETHER
810 U FLUORENE
  810 U
         2-METHYLPHENOL
        BIS(2-CHLOROISOPROPYL) ETHER
(3-AND/OR 4-)METHYLPHENOL
  810 U
                                                               3900 Ŭ
                                                                       4-NITROANILINE
  810 U
                                                               3900 U 2-METHYL-4.6-DINITROPHENOL
810 U N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
         N-NITROSODI-N-PROPYLAMINE
  810 U
  810 Ū
         HEXACHLOROETHANE
         NITROBENZENE
                                                                810 U 4-BROMOPHENYL PHENYL ETHER
  810 U
  810 U
        ISOPHORONE
                                                                810 U HEXACHLOROBENZENE (HCB)
  810 U 2-NITROPHENOL
810UR 2,4-DIMETHYLPHENOL
                                                                       PENTACHLOROPHENOL
                                                               3900 U
                                                                810 Ŭ
                                                                       PHENANTHRENE
         BÉNZOIC ACID
                                                                       ANTHRACENE
 3900 U
                                                                810 U
         BIS(2-CHLOROETHOXY) METHANE
                                                                       DI-N-BUTYLPHTHALATE
  810 U
                                                                810 U
         2.4-DICHLOROPHENOL
                                                                       FLUORANTHENE
  810 U
                                                                810 U
                                                                810 Ŭ
  810UJ
         1,2,4-TRICHLOROBENZENE
                                                                       PYRENE
  810 U
         NAPHTHALENE
                                                                810 U
                                                                       BENZYL BUTYL PHTHALATE
  810 U
         4-CHLOROANILINE
                                                               1600 Ü
                                                                       3.3'-DICHLOROBENZIDINE
  810 U
        HEXACHLOROBUTADIENE
                                                                810 U
                                                                       BÉNZO(A)ANTHRACENE
  810 H
        4-CHLORO-3-METHYLPHENOL
2-METHYLNAPHTHALENE
                                                                810 U
                                                                       CHRYSÈNÉ
                                                                       BIS(2-ETHYLHEXYL) PHTHALATE
DI-N-OCTYLPHTHALATE
  810 U
                                                                810 U
         HEXACHLOROCYCLOPENTADIENE (HCCP)
  810 U
                                                                810 U
         2,4,6-TRICHLOROPHENOL
                                                                       BENZO(B AND/OR K) FLUORANTHENE
  810 U
                                                                810 U
 3900 U 2,4,5-TRICHLOROPHENOL
                                                                       BENZO-A-PYRENE
                                                                810 U
                                                                810 U INDENO (1,2,3-CD) PYRENE
810 U DIBENZO(A,H)ANTHRACENE
  810 U 2-CHLORONAPHTHALENE
 3900 U 2-NITROANILINE
  810 U DIMETHYL PHTHALATE
                                                                810 U BENZO(GHI)PÉRYLENE
         ACENAPHTHYLENE
  810 U
                                                                   19 PERCENT MOISTURE
         2.6-DINITROTOLUENE
```

^{***}FOOTNOTES***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
PROJECT NO. 90-804 SAMPLE NO. 50206 SAMPLE TYPE:
                                                                       PROG ELEM: NSF COLLECTED BY: M COHEN
CITY: JEDBERG ST: SC
COLLECTION START: 09/17/90 1555 STOP: 00/00/00
* *
     SOURCE:
**
     STATION ID: SD-01
                                                SAS NO.: D. NO.: X748
** CASE NO.: 14888
UG/KG
    UG/KG ANALYTICAL RESULTS
                                                                              ANALYTICAL RESULTS
                                                                      4200UR 3-NITROANILINE
880 U ACENAPHTHENE
   880 U PHENOL
  880 U BIS(2-CHLOROETHYL) ETHER
  880 U 2-CHLOROPHENOL
880 U 1,3-DICHLOROBENZENE
880 U 1,4-DICHLOROBENZENE
                                                                      4200 U 2,4-DINITROPHENOL
4200 U 4-NITROPHENOL
                                                                       880 U DIBENZOFURAN
  880 U BÉNZYL ALCOHOL
880 U 1,2-DICHLOROBENZENE
                                                                       880 U 2,4-DINITROTOLUENE
                                                                       880 U DIETHYL PHTHALATE
  880 U 2-METHYLPHENOL
                                                                       880 U 4-CHLOROPHENYL PHENYL ETHER
  880 U BIS(2-CHLOROISOPROPYL) ETHER
                                                                       880 U FLUORENE
  880 U (3-AND/OR 4-)METHYLPHENOL
880 U N-NITROSODI-N-PROPYLAMINE
880 U HEXACHLOROETHANE
                                                                      4200 U 4-NITROANILINE
                                                                      4200 U 2-METHYL-4.6-DINITROPHENOL
880 U N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
  880 U NITROBENZENE
                                                                       880 U 4-BROMOPHENYL PHENYL ETHER
  880 U ISOPHORONE
                                                                       880 U HEXACHLOROBENZENE (HCB)
  880 U 2-NITROPHENOL
880UR 2,4-DIMETHYLPHENOL
                                                                      4200 U PENTACHLOROPHENOL
                                                                       880 U PHENANTHRENE
  4200 U BÉNZOIC ACID
                                                                       880 U ANTHRACENE
  880 U BIS(2-CHLOROETHOXY) METHANE
880 U 2,4-DICHLOROPHENOL
880UJ 1,2,4-TRICHLOROBENZENE
                                                                       880 U DI-N-BUTYLPHTHALATE
                                                                       880 U FLUORANTHENE
                                                                       880 Ú
                                                                              PYRENE
  880 U NAPHTHALENE
                                                                       880 U BENZYL BUTYL PHTHALATE
  880 U 4-CHLOROANILINE
                                                                      1800 U 3,3'-DICHLOROBENZIDINE
                                                                       880 U BÉNZO(A)ANTHRACENE
  880 U HEXACHLOROBUTADIENE
  880 U 4-CHLORO-3-METHYLPHENOL
                                                                       880 U CHRYSÉNÉ
  880 U 2-METHYLNAPHTHALENE
                                                                       880 U BIS(2-ETHYLHEXYL) PHTHALATE
 880 U HEXACHLOROCYCLOPENTADIENE (HCCP)
880 U 2,4,6-TRICHLOROPHENOL
4200 U 2,4,5-TRICHLOROPHENOL
                                                                       880 U DI-N-OCTYLPHTHALATE
                                                                       880 U BENZO(B AND/OR K)FLUORANTHENE
880 U BENZO-A-PYRENE
                                                                       880 U INDENO (1.2.3-CD) PYRENE
880 U DIBENZO(A,H)ANTHRACENE
  880 U 2-CHLORONAPHTHALENE
  4200 U 2-NITROANILINE
  880 U DIMETHYL PHTHALATE
                                                                       880 U BENZO(GHI)PERYLENE
  880 U ACENAPHTHYLENE
                                                                          25 PERCENT MOISTURE
  880 U 2,6-DINITROTOLUENE
```

^{***}FOOTNOTES***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
PROJECT NO. 90-804 SAMPLE NO. 50207 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN ST: SC STATION ID: SD-02 COLLECTION START: 09/17/90 1535 STOP: 00/00/00
* *
                                                                                                                         * *
**
**
                                   SAS NO.:
  CASE NO.: 14888
                                                               D. NO.: X747
UG/KG
         ANALYTICAL RESULTS
                                                                                   ANALYTICAL RESULTS
  800 U PHENOL
                                                               3900UR 3-NITROANILINE
  800 U BIS(2-CHLOROETHYL) ETHER
                                                                800 U ACENAPHTHENE
  800 U 2-CHLOROPHENOL
                                                               3900 U 2,4-DINITROPHENOL
  800 U 1,3-DICHLOROBENZENE
                                                               3900 U 4-NITROPHENOL
                                                                800 U DIBENZOFURAN
800 U 2,4-DINITROTOLUENE
  800 U 1,4-DICHLOROBENZENE
  800 U BÉNZYL ALCOHOL
  800 U 1,2-DICHLOROBENZENE
                                                                800 U DIETHYL PHTHALATE
  800 U 2-METHYLPHENOL
                                                                800 U 4-CHLOROPHENYL PHENYL ETHER
  800 U BIS(2-CHLOROISOPROPYL) ETHER
                                                                800 U FLUORENE
  800 U (3-AND/OR 4-)METHYLPHENOL
800 U N-NITROSODI-N-PROPYLAMINE
                                                               3900 U 4-NITROANILINE
                                                               3900 U 2-METHYL-4,6-DINITROPHENOL
800 U N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
  800 U
800 U
         HEXACHLOROETHANE
         NITROBENZENE
                                                                800 U 4-BROMOPHENYL PHENYL ETHER
  800 U ISOPHORONE
                                                                800 U HEXACHLOROBENZENE (HCB)
  800 U 2-NITROPHENOL
                                                               3900 U PENTACHLOROPHENOL
  800UR 2,4-DIMETHYLPHENOL
                                                                800 U
                                                                       PHENANTHRENE
 3900 U
         BENZOIC ACID
                                                                800 U
                                                                       ANTHRACENE
        BIS(2-CHLOROETHOXY) METHANE
2.4-DICHLOROPHENOL
                                                                       DI-N-BUTYLPHTHALATE
  800 U
                                                                800 Ú
  800 Ŭ
                                                                       FLUORANTHENE
                                                                800 U
  800UJ 1,2,4-TRICHLOROBENZENE
                                                                800 U
                                                                       PYRENE
  800 U
        NAPHTHALENE
                                                                800 U
                                                                       BENZYL BUTYL PHTHALATE
                                                                       3.3'-DICHLOROBENZIDINE
  800 U
         4-CHLOROANILINE
                                                               1600 U
  800 U HEXACHLOROBUTADIENE
                                                                800 U
                                                                       BÉNZO(A)ANTHRACENE
  800 U 4-CHLORO-3-METHYLPHENOL
800 U 2-METHYLNAPHTHALENE
800 U HEXACHLOROCYCLOPENTADIENE (HCCP)
                                                                800 Ŭ
                                                                       CHRYSENE
                                                                800 U
                                                                       BIS(2-ETHYLHEXYL) PHTHALATE
                                                                       DI-N-OCTYLPHTHALATE
                                                                800UR
 800 U 2,4,6-TRICHLOROPHENOL
3900 U 2.4,5-TRICHLOROPHENOL
                                                                       BENZO(B AND/OR K) FLUORANTHENE
                                                                800UR
                                                                800UR BENZO-A-PYRENE
  800 U 2-CHLORONAPHTHALENE
                                                                800UR INDENO (1,2,3-CD) PYRENE
 3900 U 2-NITROANILINE
                                                                800UR DIBENZO(A,H)ANTHRACENE
  800 U DIMETHYL PHTHALATE
                                                                800UR BENZO(GHI)PERYLENE
        ACENAPHTHYLENE
  800 U
                                                                   18 PERCENT MOISTURE
  800 U 2.6-DINITROTOLUENE
```

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

^{*}R-OC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
PROJECT NO. 90-804 SAMPLE NO. 50208 SAMPLE TYPE: SOIL PROGELEM: NSF COLLECTED BY: M COHEN ST: SC COLLECTION START: 09/17/90 1200 STOP: 00/00/00
**
                                                                                                                                   * *
* *
**
                                    SAS NO.:
  CASE NO.: 14888
                                                                    D. NO.: X745
UG/KG ANALYTICAL RESULTS
    UG/KG ANALYTICAL RESULTS
                                                                     4600UR 3-NITROANILINE
950 U ACENAPHTHENE
   950 U PHENOL
  950 U BIS(2-CHLOROETHYL) ETHER
950 U 2-CHLOROPHENOL
                                                                     4600 U 2,4-DINITROPHENOL
   950 U 1,3-DICHLOROBENZENE
                                                                     4600 U 4-NITROPHENOL
                                                                     950 U DIBENZOFURAN
950 U 2,4-DINITROTOLUENE
   950 U 1.4-DICHLOROBENZENE
   950 U BENZYL ALCOHOL
  950 U 1,2-DICHLOROBENZENE
950 U 2-METHYLPHENOL
                                                                      950 U DIETHYL PHTHALATE
                                                                      950 U 4-CHLOROPHENYL PHENYL ETHER
  950 U BIS(2-CHLOROISOPROPYL) ETHER
950 U (3-AND/OR 4-)METHYLPHENOL
950 U N-NITROSODI-N-PROPYLAMINE
                                                                     950 U FLUORENE
                                                                     4600 U 4-NITROANILINE
                                                                     4600 U 2-METHYL-4.6-DINITROPHENOL
950 U N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
                                                                     950 Ŭ
   950 U HEXACHLOROETHANE
  950 U NITROBENZENE
950 U ISOPHORONE
                                                                      950 U 4-BROMOPHENYL PHENYL ETHER
                                                                      950 U HEXACHLOROBENZENE (HCB)
 950 U 2-NITROPHENOL
950UR 2,4-DIMETHYLPHENOL
4600 U BENZOIC ACID
                                                                     4600 U PENTACHLOROPHENOL
                                                                      950 U
                                                                            PHENANTHRENE
                                                                      950 U
                                                                             ANTHRACENE
  950 U BIS(2-CHLOROETHOXY) METHANE
950 U 2,4-DICHLOROPHENOL
950UJ 1,2,4-TRICHLOROBENZENE
                                                                            DI-N-BUTYLPHTHALATE FLUORANTHENE
                                                                      950 U
                                                                      950 Ŭ
                                                                      950 Ü
                                                                            PYRENE
          NAPHTHALENE
  950 U
                                                                      950 U
                                                                             BENZYL BUTYL PHTHALATE
  950 Ú
          4-CHLOROANILINE
                                                                     1900 U
                                                                             3.3'-DICHLOROBENZIDINE
  950 U HEXACHLOROBUTADIENE
                                                                      950 U
                                                                             BÉNZO(A) ANTHRACENE
  950 U 4-CHLORO-3-METHYLPHENOL
                                                                      950 Ŭ
                                                                             CHRYSENE
  950 Ü
         2-METHYLNAPHTHALENE
                                                                      950 Ú
                                                                             BIS(2-ETHYLHEXYL) PHTHALATE
 950 U HEXACHLOROCYCLOPENTADI
950 U 2,4,6-TRICHLOROPHENOL
4600 U 2,4,5-TRICHLOROPHENOL
         HEXACHLOROCYCLOPENTADIENE (HCCP)
                                                                             DI-N-OCTYLPHTHALATE
                                                                      950 U
                                                                             BENZO(B AND/OR K)FLUORANTHENE
                                                                      950 U
                                                                             BENZO-A-PYRENE
                                                                      950 U
  950 U 2-CHLORONAPHTHALENE
4600 U 2-NITROANILINE
                                                                      950 U INDENO (1,2,3-CD) PYRENE
                                                                      950 U DIBENZO(A, H) ANTHRACENE
  950 U DIMETHYL PHTHALATE
                                                                      950 U BENZO(GHI)PERYLENE
  950 U ACENAPHTHYLENE
                                                                         30 PERCENT MOISTURE
  950 U 2.6-DINITROTOLUENE
```

^{***}FOOTNOTES***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
    PROJECT NO. 90-804 SAMPLE NO. 50209 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN SOURCE: TRIDENT N. LANDFILL STATION ID: SD-04 PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1135 STOP: 00/00/00
**
                                                                                                                                                  * *
**
                                          SAS NO.:
** CASE NO.: 14888
                                                                            D. NO.: X742
                                                                                                                                                  * *
UG/KG
                                                                              UG/KG ANALYTICAL RESULTS
           ANALYTICAL RESULTS
   880 U PHENOL
                                                                             4200UR 3-NITROANILINE
   880 U BIS(2-CHLOROETHYL) ETHER
                                                                              880 U ACENAPHTHENE
   880 U 2-CHLOROPHENOL
                                                                             4200 U
                                                                                      2,4-DINITROPHENOL
   880 U 1.3-DICHLOROBENZENE
                                                                             4200 U 4-NITROPHENOL
   880 U 1.4-DICHLOROBENZENE
                                                                              880 U DIBENZOFURAN
  880 U BENZYL ALCOHOL
880 U 1,2-DICHLOROBENZENE
880 U 2-METHYLPHENOL
                                                                              880 U 2,4-DINITROTOLUENE
880 U DIETHYL PHTHALATE
880 U 4-CHLOROPHENYL PHENYL ETHER
   880 U BIS(2-CHLOROISOPROPYL) ETHER
                                                                              880 Ū
                                                                                      FLUORENE
   880 U (3-AND/OR 4-)METHYLPHENOL
                                                                                      4-NITROANILINE
                                                                             4200 U
  880 U N-NITROSODI-N-PROPYLAMINE
880 U HEXACHLOROETHANE
880 U NITROBENZENE
                                                                                      2-METHYL-4,6-DINITROPHENOL
N-NITROSODÍPHENYLAMINE/DIPHENYLAMINE
                                                                             4200 U
                                                                              880 U
                                                                                      4-BROMOPHENYL PHENYL ETHER
                                                                              880 U
   880 U ISOPHORONE
                                                                                      HEXACHLOROBENZENE (HCB)
                                                                              880 Ü
 880 U 2-NITROPHENOL
880UR 2,4-DIMETHYLPHENOL
4200 U BENZOIC ACID
                                                                                      PENTACHLOROPHENOL
                                                                             4200 U
                                                                                      PHENANTHRENE
ANTHRACENE
                                                                              880 U
                                                                              880 U
  880 U BIS(2-CHLOROETHOXY) METHANE
880 U 2.4-DICHLOROPHENOL
880UJ 1.2.4-TRICHLOROBENZENE
                                                                                      DI-N-BUTYLPHTHALATE
                                                                              880 U
                                                                              880 U
                                                                                      FLUORANTHENE
                                                                              880 U
                                                                                      PYRFNF
   880 U NAPHTHALENE
                                                                              880 U
                                                                                      BENZYL BUTYL PHTHALATE
                                                                                      3.3'-DICHLOROBENZIDINE
BENZO(A)ANTHRACENE
   880 U 4-CHLOROANILINE
                                                                             1800 Ŭ
   880 U HEXACHLOROBUTADIENE
880 U 4-CHLORO-3-METHYLPHENOL
                                                                              880 Ú
                                                                                      CHRYSENE
BIS(2-ETHYLHEXYL) PHTHALATE
DI-N-OCTYLPHTHALATE
                                                                              880 U
   880 Ŭ
           2-METHYLNAPHTHALENE
                                                                              880 Ŭ
   880 U HEXACHLOROCYCLOPENTADIENE (HCCP)
                                                                              880 U
  880 U 2,4,6-TRICHLOROPHENOL
4200 U 2,4,5-TRICHLOROPHENOL
                                                                              880 Ū
                                                                                      BENZO(B AND/OR K) FLUORANTHENE
BENZO-A-PYRENE
                                                                              880 U
   880 U 2-CHLORONAPHTHALENE
                                                                              880 U INDENO (1,2,3-CD) PYRENE
880 U DIBENZO(A,H)ANTHRACENE
  4200 U 2-NITROANILINE
  880 U DIMETHYL PHTHALATE
880 U ACENAPHTHYLENE
                                                                              880 U BENZO(GHI)PÉRYLENE
                                                                                 25 PERCENT MOISTURE
          2.6-DINITROTOLUENE
  880 U
```

^{***}FOOTNOTES***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

```
EXTRACTABLE ORGANICS DATA REPORT
PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 0740 STOP: 00/00/00
    PROJECT NO. 90-804 SAMPLE NO. 50211 SAMPLE TYPE: GROUNDWA
    SOURCE: TRIDENT N. LANDFILL
                                                                                                                              * *
**
    STATION ID: TB-01-W
* *
**
                                                                                                                              **
                                     SAS NO.:
** CASE NO.: 14888
                                                                    D. NO.: X737
                                                                                                                              * *
ANALYTICAL RESULTS
                                                                                      ANALYTICAL RESULTS
                                                                   UG/L
   10 U PHENOL
                                                                    50UR 3-NITROANILINE
   10 U BIS(2-CHLOROETHYL) ETHER
                                                                    10 U ACENAPHTHENE
   10 U 2-CHLOROPHENOL
                                                                    50 U 2,4-DINITROPHENOL
   10 U 1,3-DICHLOROBENZENE
                                                                    50 U 4-NITROPHENOL
   10 U 1,4-DICHLOROBENZENE
                                                                    10 U DIBENZOFURAN
                                                                    10 U 2.4-DINITROTOLUENE
10 U DIETHYL PHTHALATE
   10 U BÉNZYL ALCOHOL
   10 U 1,2-DICHLOROBENZENE
10 U 2-METHYLPHENOL
                                                                         4-CHLOROPHENYL PHENYL ETHER
                                                                    10 U
   10 U BIS(2-CHLOROISOPROPYL) ETHER
10 U (3-AND/OR 4-)METHYLPHENOL
                                                                         FLUORENE
                                                                    10 U
                                                                    50 U 4-NITROANILINE
                                                                    50 U 2-METHYL-4,6-DINITROPHENOL
10 U N-NITROSODIPHENYLAMINE/DIPHENYLAMINE
         N-NITROSODI-N-PROPYLAMINE
   10 U
   10 U HEXACHLOROETHANE
                                                                          4-BROMOPHENYL PHENYL ETHER
   10 U NITROBENZENE
                                                                    10 U
   10 U ISOPHORONE
                                                                    10 U HEXACHLOROBENZENE (HCB)
   10 U 2-NITROPHENOL
10 U 2,4-DIMETHYLPHENOL
50 U BENZOIC ACID
                                                                    50 U
                                                                         PENTACHLOROPHENOL
                                                                         PHENANTHRENE
ANTHRACENE
                                                                    10 U
                                                                    10 Ú
   10 Ŭ
         BIS(2-CHLOROETHOXY) METHANE
                                                                    10UR DI-N-BUTYLPHTHALATE
                                                                          FLUORANTHENE
   10 U 2,4-DICHLOROPHENOL
                                                                    10 U
   10 U 1,2,4-TRICHLOROBENZENE
                                                                    10 U
                                                                          PYRENE
   10 U NAPHTHALENE
                                                                    10 U
                                                                         BENZYL BUTYL PHTHALATE
                                                                          3,3'-DICHLOROBENZIDINE
   10 Ŭ
         4-CHLOROANILINE
                                                                    20 Ú
         HEXACHLOROBUTADIENE
                                                                    10 0
                                                                          BENZO(A)ANTHRACENE
   10 U
                                                                    10 U
                                                                         CHRYSÈNÉ
   10 U 4-CHLORO-3-METHYLPHENOL
                                                                         BIS(2-ETHYLHEXYL) PHTHALATE
DI-N-OCTYLPHTHALATE
         2-METHYLNAPHTHALENE
                                                                    10 Ū
   10 U
   10 U HEXACHLOROCYCLOPENTADIENE (HCCP)
                                                                    10 U
   10 U 2,4,6-TRICHLOROPHENOL
                                                                         BENZO(B AND/OR K) FLUORANTHENE
                                                                    10 U
                                                                          BENZO-A-PYRENE
   50 U 2.4.5-TRICHLOROPHENOL
   10 U 2-CHLORONAPHTHALENE
                                                                   10 U INDENO (1.2,3-CD) PYRENE
10 U DIBENZO(A,H)ANTHRACENE
   50 U 2-NITROANILINE
   10 U DIMETHYL PHTHALATE
10 U ACENAPHTHYLENE
                                                                    10 U
                                                                          BENZO(GHI)PÉRYLENE
   10 U 2.6-DINITROTOLUENE
```

^{***}FOOTNOTES*** *A-AVERAGE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/06/90

**

MISCELLANEOUS EXTRACTABLE COMPOUNDS - DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50186 SAMPLE TYPE: GROUNDWA PROG ELEM: NSF COLLECTED BY: M COHEN * * * * SOURCE: TRIDENT N. LANDFILL CITY: JEDBERG ST: SC * * * *

COLLECTION START: 09/18/90 1500 STOP: 00/00/00 STATION ID: MW-01 MD NO: X746 CASE NO .: 14888 SAS NO.: D. NO.: X746

** ** * * **

ANALYTICAL RESULTS UG/L

BROMOHEXANE 30JN 20JN CAPROLACTAM

40JN BUTYLIDENEBIS([DIMETHYLETHYL)METHYLETHYL]PHENOL

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/06/90

* *

* *

MISCELLANEOUS EXTRACTABLE COMPOUNDS - DATA REPORT

PROJECT NO. 90-804 SAMPLE SOURCE: TRIDENT N. LANDFILL SAMPLE NO. 50187 SAMPLE TYPE: GROUNDWA PROG ELEM: NSF COLLECTED BY: M COHEN

CITY: JEDBERG ST: SC

COLLECTION START: 09/18/90 1120 STOP: 00/00/00 STATION ID: MW-02 ** MD NO: X753 CASE.NO.: 14888 SAS NO.: D. NO.: X753 **

** ** * *

ANALYTICAL RESULTS UG/L

30JN BROMOHEXANE

100JN BUTYLIDENEBIS[(DIMETHYLETHYL)METHYLETHYL]PHENOL

FOOTNOTES

* *

**

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

^{*}R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/06/90

* *

* *

* *

MISCELLANEOUS EXTRACTABLE COMPOUNDS - DATA REPORT

PROG ELEM: NSF PROJECT NO. 90-804 SAMPLE NO. 50188 SAMPLE TYPE: COLLECTED BY: M COHEN ** * *

SOURCE: CITY: JEDBERG ST: SC

STATION ID: MW-03 COLLECTION START: 09/18/90 1200 STOP: 00/00/00 CASE.NO.: 14888 MD NO: X754 SAS NO.: D. NO.: X754 * *

** * *

ANALYTICAL RESULTS UG/L

60JN BUTYLIDENEBIS (DIMETHYLETHYL) METHYLETHYL] PHENOL

30JN CAPROLACTAM 30JN BROMOHEXANE

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

^{*}K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT. *R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/06/90

MISCELLANEOUS EXTRACTABLE COMPOUNDS - DATA REPORT PROG ELEM: NSF COLLECTED BY: M COHEN PROJECT NO. 90-804 SAMPLE NO. 50189 SAMPLE TYPE: GROUNDWA * * SOURCE: TRIDENT N. LANDFILL STATION ID: MW-04 CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1435 STOP: 00/00/00 D. NO.: X755 MD NO: X755 ** ** ** * * * * ** CASE.NO.: 14888 SAS NO.: * * * * ***

ANALYTICAL RESULTS UG/L

CAPROLACTAM 10JN BUTYLIDENEBIS (DIMETHYLETHYL) METHYLETHYL] PHENOL **20JN**

REMARKS HOLDING TIMES EXCEEDED(40 CFR 136,OCTOBER 26,1984) ***REMARKS***

FOOTNOTES *A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/06/90

MISCELLANEOUS EXTRACTABLE COMPOUNDS - DATA REPORT

PROG ELEM: NSF COLLECTED BY: M COHEN PROJECT NO. 90-804 SAMPLE NO. 50190 SAMPLE TYPE: GROUNDWA SOURCE: TRIDENT N. LANDFILL CITY: JEDBERG ST: SC ** ** CÔLLECTION START: 09/18/90 0920 STOP: 00/00/00 D. NO.: X751 MD NO: X751 STATION ID: PW-01 ** * * CASE.NO.: 14888 ** * * SAS NO.: ** **

ANALYTICAL RESULTS UG/L

20JN METHYLIDENEBIS[(DIMETHYLETHYL)METHYL]PHENOL

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/06/90

MISCELLANEOUS EXTRACTABLE COMPOUNDS - DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50191 SAMPLE TYPE: GROUNDWA PROG ELEM: NSF COLLECTED BY: M COHEN SOURCE: TRIDENT N. LANDFILL STATION ID: PW-02 CITY: JEDBERG ST: SC ** ** **

COLLECTION START: 09/18/90 1010 STOP: 00/00/00 D. NO.: X752 MD NO: X752 ** CASE.NO.: 14888 SAS NO.: D. NO.: X752 * * ** * *

ANALYTICAL RESULTS UG/L

20JN BROMOHEXANE

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

^{*}Ř-QC ÎNDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/06/90

MISCELLANEOUS EXTRACTABLE COMPOUNDS - DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50201 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN SOURCE: TRIDENT N. LANDFILL CITY: JEDBERG ST: SC ** * * COLLECTION START: 09/18/90 1135 STOP: 00/00/00 STATION ID: SB-02 ** * *

** CASE.NO.: 14888 SAS NO.: D. NO.: X750 MD NO: X750 ** ** **

ANALYTICAL RESULTS UG/KG

1000J 1 UNIDENTIFIED COMPOUND

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

^{*}R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/06/90

MISCELLANEOUS EXTRACTABLE COMPOUNDS - DATA REPORT

* * * *** PROJECT NO. 90-804 SAMPLE NO. 50205 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN --.. SOURCE: TRIDENT N. LANDFILL STATION ID: SB-06 CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1445 STOP: 00/00/00 D. NO.: X867 MD NO: X867 * * ** **

** CASE NO : 14888 SAS NO.: ** ** . . * ***

ANALYTICAL RESULTS UG/KG

1000J 1 UNIDENTIFIED COMPOUND

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/06/90

MISCELLANEOUS EXTRACTABLE COMPOUNDS - DATA REPORT

PROG ELEM: NSF COLLECTED BY: M COHEN PROJECT NO. 90-804 SAMPLE NO. 50206 SAMPLE TYPE: SOURCE: CITY: JEDBERG ST: SC ** * * ** * *

STATION ID: SD-01 COLLECTION START: 09/17/90 1555 STOP: 00/00/00 CASE.NO.: 14888 SAS NO.: D. NO.: X748 MD NO: X748

** * * ** **

ANALYTICAL RESULTS UG/KG

1000J 1 UNIDENTIFIED COMPOUND

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

11/06/90

**

* *

* *

MISCELLANEOUS EXTRACTABLE COMPOUNDS - DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50208 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN **

CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1200 STOP: 00/00/00 D. NO.: X745 MD NO: X745 SOURCE: TRIDENT N. LANDFILL STATION ID: SD-03 **

** CASE NO : 14888 SAS NO : ** * * * *

ANALYTICAL RESULTS UG/KG

3000J 2 UNIDENTIFIED COMPOUNDS

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region IV Environmental Services Division College Station Road, Athens, Ga. 30613

*****MEMORANDUM****

DATE: 11/07/90

SUBJECT: Results of Pesticide/PCB Analysis;

90-804 TRIDENT N. LANDFILL JEDBERG SC

JEDBERG SC CASE NO: 14888

FROM: Robert W. Knight

Chief, Laboratory Evaluation/Quality Assurance Section

TO: PHIL BLACKWELL

Attached are the results of analysis of samples collected as part of the subject project.

As a result of the Quality Assurance Review, certain data qualifiers may have been placed on the data. Attached is a DATA QUALIFIER REPORT which explains the reasons that these qualifiers were required.

If you have any questions please contact me.

ATTACHMENT

ORGANIC DATA QUALIFIER REPORT

Case Number 14888

Project Number

90-804

SAS Number

Site ID. Trident N. Landfill, Jedberg, SC.

Affected Samples	Compound or Fraction	Flag <u>Used</u>	Reason
<u>Volatiles</u> DX753,738,740,741 744,750,867	all positives	J	<quantitation limit<="" td=""></quantitation>
Extractables all soil samples all samples all water samples DX740,744	1,2,4-trichlorobenzene 2,4-dimethylphenol 3-nitroaniline di-n-butylphthalate butylbenzylphthalate	J R R R J	low recovery QC spike unacceptable recovery QC spike unacceptable QC spike recovery unacceptable QC spike recovery <quantitation limit<="" td=""></quantitation>
DX740,741,744 DX755	all extractables except 2,4-dimethylphenol and 3-nitroaniline all extractables except 3-nitroaniline and di-n-butylphthalate	J J	excessive holding time exceeded 40CFR136 extraction
DX738	di-n-octylphthalate benzo(b/k)fluoranthene	J J	holding time internal standard low internal standard low
DX747	benzo(a)pyrene indeno(1,2,3-cd)pyrene dibenz(a,h)anthracene benzo(g,h,i)perylene di-n-octylphthalate benzo(b/k)fluoranthene benzo(a)pyrene indeno(1,2,3-cd)pyrene dibenz(a,h)anthracene benzo(g,h,i)perylene	J J J R R R R R R R R	internal standard low internal standard low internal standard low internal standard low internal standard unacceptable internal standard unacceptable internal standard unacceptable internal standard unacceptable internal standard unacceptable internal standard unacceptable internal standard unacceptable internal standard unacceptable internal standard unacceptable
Pesticides all samples all waters	beta-BHC heptachlor DDE and DDD	R J J	unacceptable QC recovery low QC spike recovery low QC spike recovery

11/06/90 PESTICIDES/PCB'S DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50186 SAMPLE TYPE: GROUNDWA PROG ELEM: NSF COLLECTED BY: M COHEN SOURCE: TRIDENT N. LANDFILL ST: SC CITY: JEDBERG * * STATION ID: MW-01 COLLECTION START: 09/18/90 1500 STOP: 00/00/00 ** ** ** CASE NUMBER: 14888 SAS NUMBER: D. NUMBER: X746 ** **

UG/L ANALYTICAL RESULTS UG/L ANALYTICAL RESULTS 0.05U ALPHA-BHC 0.50U METHOXYCHLOR O.OSUR BETA-BHC O. 10U ENDRIN KETONE 0.05U DELTA-BHC CHLORDANE (TECH. MIXTURE) /1 0.050 GAMMA-CHLORDANE /2 GAMMA-BHC (LINDANE) 0.500 ALPHA-CHLORDANE TOXAPHENE 0.05UJ HEPTACHLOR 0.500 0.050 ALDRIN 1.00 PCB-1016 (AROCLOR 1016) PCB-1221 (AROCLOR 1221) 0.050 HEPTACHLOR EPOXIDE 0.500 0.050 ENDOSULFAN I (ALPHA) 0.500 PCB-1232 (AROCLOR 1232) PCB-1242 (AROCLOR 1242) PCB-1248 (AROCLOR 1248) 0.100 DIELDRIN 0.500 0.10UJ 4,4'-DDE (P,P'-DDE) 0.500 0.10U ENDRIN 0.500 1.00 PCB-1254 (AROCLOR 1254) O. 10U ENDOSULFAN II (BETA) 0.10UJ 4,4'-DDD (P,P'-DDD) 0.10U ENDOSULFAN SULFATE 0.10U 4,4'-DDT (P,P'-DDT) 1.00 PCB-1260 (AROCLOR 1260)

REMARKS ***REMARKS***

^{*}A-AVERAGE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.
*C-CONFIRMED BY GCMS
1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

11/06/90

PESTICIDES/PC	B'S DATA REPORT			
*** * * * * *	* * * * * * * * * *		* * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
		LE NO. 50187 SAMPLE	TYPE: GROUNDWA PROG	G ELEM: NSF COLLECTED BY: M COHEN ** V-JEDBERG ST-SC **
	TRIDENT N. LANDFILL	-	CITY	
	ID: MW-02	SAS NUMBER:	COLL	LECTION START: 09/18/90 1120 STOP: 00/00/00 ** NUMBER: X753 **
** CASE NUM	BER: 14888	SAS NUMBER:	υ.	NUMBER: A/33
*** * * * * *				
ÜG/L		CAL RESULTS	UG/L	
04/ 5	AMAZIII	THE RESULTS	04/2	L AMALTITORE RESULTS
0.05U ALP	HA-BHC		0.500	U METHOXYCHLOR
	A-BHC		Ö. 10U	
0.05U DEL	TA-BHC			CHLORDANE (TECH. MIXTURE) /1
	MA-BHC (LINDANE)		0.500	
	TACHLOR		0,500	
0.05U ALD			1 <u>.0</u> U	
0.05U HEP	TACHLOR EPOXIDE		0.500	
	OSULFAN I (ALPHA)		0.500	
	LDRIN '-DDE (P,P'-DDE)		0.50U 0.50U	
0.1003 4,4 0.100 END			0.500	
	DSULFAN II (BETA)		1.00	
	'-DDD (P,P'-DDD)		1.00	
O. 10U END	SULFAN SULFATE		1.00	100 1200 (7000200 7200)
	'-DDT (P.P'-DDT)			

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.
*C-CONFIRMED BY GCMS 1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

11/06/90 DESTICINES/DOR'S DATA DEDORT

PESTICIDES/PCB'S DATA REPORT	
** PROJECT NO. 90-804 SAMPLE NO. 50188 SAMPLE TYPE: ** SOURCE: ** STATION ID: MW-03 ** CASE NUMBER: 14888 SAS NUMBER:	PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 1200 STOP: 00/00/00 D. NUMBER: X754
*** * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
O.OSU ALPHA-BHC O.OSU BETA-BHC O.OSU DELTA-BHC O.OSU GAMMA-BHC (LINDANE) O.OSUJ HEPTACHLOR O.OSU ALDRIN O.OSU HEPTACHLOR EPOXIDE O.OSU ENDOSULFAN I (ALPHA) O.10U DIELDRIN O.10UJ 4,4'-DDE (P,P'-DDE) O.10U ENDOSULFAN II (BETA) O.10UJ 4,4'-DDD (P,P'-DDD) O.10U ENDOSULFAN SULFATE O.10U 4,4'-DDT (P,P'-DDT)	0.50U METHOXYCHLOR 0.10U ENDRIN KETONE CHLORDANE (TECH. MIXTURE) /1 0.50U GAMMA-CHLORDANE /2 0.50U ALPHA-CHLORDANE /2 1.0U TOXAPHENE 0.50U PCB-1016 (AROCLOR 1016) 0.50U PCB-1221 (AROCLOR 1221) 0.50U PCB-1232 (AROCLOR 1232) 0.50U PCB-1242 (AROCLOR 1242) 0.50U PCB-1248 (AROCLOR 1242) 0.50U PCB-1254 (AROCLOR 1254) 1.0U PCB-1260 (AROCLOR 1260)

REMARKS ***REMARKS***

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

*C-CONFIRMED BY GCMS

1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

EPA-REGION IV ESD, ATHENS, GA. 11/06/90

PESTICIDES/PCB'S DATA REPORT *** * * * * * * * * * * * * * * * * *	
UG/L ANALYTICAL RESULTS	* * * * * * * * * * * * * * * * * * *
O.05U ALPHA-BHC O.05UR BETA-BHC O.05U DELTA-BHC O.05U GAMMA-BHC (LINDANE) O.05UJ HEPTACHLOR O.05U ALDRIN O.05U HEPTACHLOR EPOXIDE O.05U ENDOSULFAN I (ALPHA) O.10U DIELDRIN O.10UJ 4,4'-DDE (P,P'-DDE) O.10U ENDRIN O.10U ENDRIN O.10U ENDOSULFAN II (BETA) O.10UJ 4,4'-DDD (P,P'-DDD) O.10U ENDOSULFAN SULFATE O.10U 4.4'-DDT (P,P'-DDT)	0.50U METHOXYCHLOR 0.10U ENDRIN KETONE CHLORDANE (TECH. MIXTURE) /1 0.50U GAMMA-CHLORDANE /2 0.50U ALPHA-CHLORDANE /2 1.0U TOXAPHENE 0.50U PCB-1016 (AROCLOR 1016) 0.50U PCB-1221 (AROCLOR 1221) 0.50U PCB-1232 (AROCLOR 1232) 0.50U PCB-1242 (AROCLOR 1242) 0.50U PCB-1248 (AROCLOR 1242) 0.50U PCB-1254 (AROCLOR 1254) 1.0U PCB-1260 (AROCLOR 1254)

REMARKS ***REMARKS***

FOOTNOTES

*FOUNDIES***

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

*C-CONFIRMED BY GCMS

1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

11/06/90 PESTICIDES/POR'S DATA REPORT

PESTICIDES/PCB'S DATA REPORT	
** PROJECT NO. 90-804 SAMPLE NO. 50190 SAMPLE TYPE: GROUNDWA ** SOURCE: TRIDENT N. LANDFILL ** STATION ID: PW-01 ** CASE NUMBER: 14888 SAS NUMBER:	PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/18/90 0920 STOP: 00/00/00 . NUMBER: X751
*** * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
O.O5U ALPHA-BHC O.O5U BETA-BHC O.O5U DELTA-BHC O.O5U GAMMA-BHC (LINDANE) O.O5UJ HEPTACHLOR O.O5U ALDRIN O.O5U HEPTACHLOR EPOXIDE O.O5U ENDOSULFAN I (ALPHA) O.10U DIELDRIN O.10UJ 4,4'-DDE (P,P'-DDE) O.10U ENDRIN O.10U ENDRIN O.10U ENDRIN O.10U ENDOSULFAN II (BETA) O.10UJ 4,4'-DDD (P,P'-DDD) O.10U GNDOSULFAN SULFATE O.10U 4,4'-DDT (P,P'-DDT)	0.50U METHOXYCHLOR 0.10U ENDRIN KETONE CHLORDANE (TECH. MIXTURE) /1 0.50U GAMMA-CHLORDANE /2 1.0U TOXAPHENE 0.50U PCB-1016 (AROCLOR 1016) 0.50U PCB-1221 (AROCLOR 1221) 0.50U PCB-1232 (AROCLOR 1232) 0.50U PCB-1242 (AROCLOR 1242) 0.50U PCB-1248 (AROCLOR 1242) 0.50U PCB-1254 (AROCLOR 1254) 1.0U PCB-1260 (AROCLOR 1254) 1.0U PCB-1260 (AROCLOR 1260)

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

*C-CONFIRMED BY GCMS

1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

EPA-REGION IV ESD, ATHENS, GA. 11/06/90 DESTICIDES /DCR'S DATA DEDORT

PESTICIDES/PCB'S DATA REPORT	
*** * * * * * * * * * * * * * * * * *	
** SOURCE: TRIDENT N. LANDFILL	CITY: JEDBERG ST: SC **
** STATION ID: PW-02	COLLECTION START: 09/18/90 1010 STOP: 00/00/00 **
** CASE NUMBER: 14888 SAS NUMBER:	D. NUMBER: X752 **
UG/L ANALYTICAL RESULTS	UG/L ANALYTICAL RESULTS
O OFFI ALDUA DUG	O FOUR METHOVIVOUS OR
0.05U ALPHA-BHC 0.05UR BETA-BHC	O.5OU METHOXYCHLOR O.1OU ENDRIN KETONE
0.05U DELTA-BHC	CHLORDANE (TECH. MIXTURE) /1
O.O5U GAMMA-BHC (LINDANE)	O.5OU ĠAMMA-CHLORDANE /2
O OSUJ HEPTACHLOR	O 50U ALPHA-CHLORDANE /2
0.05U ALDRIN 0.05U HEPTACHLOR EPOXIDE	1.OU TOXAPHENE O.5OU PCB-1016 (AROCLOR 1016)
0.050 HEFTACHLOR EPOXIDE 0.05U ENDOSULFAN I (ALPHA)	0.500 PCB-1010 (AROCLOR 1010) 0.50U PCB-1221 (AROCLOR 1221)
O. 10U DIELDRIN	0.50U PCB-1232 (AROCLOR 1232)
0.10UJ 4,4'-DDE (P,P'-DDE)	O.50U PCB-1242 (AROCLOR 1242)
O. 10U ENDRIN	0.50U PCB-1248 (AROCLOR 1248)
O.1OU ENDOSULFAN II (BETA) O.1OUJ 4,4'-DDD (P,P'-DDD)	1.OU PCB-1254 (AROCLOR 1254) 1.OU PCB-1260 (AROCLOR 1260)
0.10U ENDOSULFAN SULFATE	1.00 TOD 1200 (ANODEON 1200)
0.10U 4,4'-DDT (P,P'-DDT)	

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.
*C-CONFIRMED BY GCMS
1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

11/06/90

PESTICIDES/PCB'S DATA REPORT	A REGION IV ESS, AMENS, GA.	, 55, 55
	PE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1100 STOP: D. NUMBER: X740	**
UG/KG ANALYTICAL RESULTS	* * * * * * * * * * * * * * * * * * *	: * * * * * * * * * **
8.4U ALPHA-BHC 8.4UR BETA-BHC 8.4U DELTA-BHC 8.4U GAMMA-BHC (LINDANE) 8.4U HEPTACHLOR 8.4U ALDRIN 8.4U HEPTACHLOR EPOXIDE 8.4U ENDOSULFAN I (ALPHA) 17 U DIELDRIN 17 U 4,4'-DDE (P,P'-DDE) 17 U ENDRIN 17 U ENDRIN 17 U 4,4'-DDD (P,P'-DDD) 17 U ENDOSULFAN II (BETA) 17 U 4,4'-DDD (P,P'-DDD) 17 U ENDOSULFAN SULFATE 17 U 4,4'-DDT (P,P'-DDT)	84 U METHOXYCHLOR 17 U ENDRIN KETONE CHLORDANE (TECH. MIXTURE) /1 84 U GAMMA-CHLORDANE /2 84 U ALPHA-CHLORDANE /2 170 U TOXAPHENE 84 U PCB-1016 (AROCLOR 1016) 84 U PCB-1221 (AROCLOR 1221) 84 U PCB-1232 (AROCLOR 1232) 84 U PCB-1242 (AROCLOR 1242) 84 U PCB-1248 (AROCLOR 1248) 170 U PCB-1254 (AROCLOR 1254) 170 U PCB-1260 (AROCLOR 1260) 6 PERCENT MOISTURE	

REMARKS

FOOTNOTES

REMARKS

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.
*C-CONFIRMED BY GCMS
1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

11/06/90 EPA-REGION IV ESD. ATHENS. GA.

```
PESTICIDES/PCB'S DATA REPORT
PROJECT NO. 90-804 SAMPLE NO. 50196 SAMPLE TYPE: SOIL
                                                           PROG ELEM: NSF COLLECTED BY: M COHEN
                                                           CITY: JEDBERG ST: SC
COLLECTION START: 09/18/90 1120 STOP: 00/00/00
    SOURCE: TRIDENT N. LANDFILL
                                                                                                             * *
* *
* *
    STATION ID: SS-02
                                                                                                             **
* *
    CASE NUMBER: 14888
                           SAS NUMBER:
                                                            D. NUMBER: X749
                                                                                                             **
* *
                                                                                                             **
UG/KG ANALYTICAL RESULTS
                                                           UG/KG
                                                                            ANALYTICAL RESULTS
  8.7U ALPHA-BHC
8.7UR BETA-BHC
                                                           87 U METHOXYCHLOR
                                                           17 U
                                                                ENDRIN KETONE
   8.70 DELTA-BHC
                                                                CHLORDANE (TECH. MIXTURE) /1
                                                                GAMMA-CHLORDANE
   8.70 GAMMA-BHC (LINDANE)
                                                                ALPHA-CHLORDANE
TOXAPHENE
   8.70 HEPTACHLOR
                                                           87 II
   8.70 ALDRIN
                                                          170 U
                                                           87 Ŭ
   8.70 HEPTACHLOR EPOXIDE
                                                                PCB-1016 (AROCLOR 1016)
PCB-1221 (AROCLOR 1221)
   8.70 ENDOSULFAN I (ALPHA)
                                                           87 Ü
                                                                PCB-1232 (AROCLOR 1232)
PCB-1242 (AROCLOR 1242)
   17 U DIELDRIN
                                                           87 U
   17 U 4.4'-DDE (P.P'-DDE)
                                                           87 U
   17 U ENDRIN
                                                                PCB-1248 (AROCLOR 1248)
                                                           87 U
                                                          170 U PCB-1254 (AROCLOR 1254)
170 U PCB-1260 (AROCLOR 1260)
   17 U ENDOSULFAN II (BETA)
   17 U 4,4'-DDD (P,P'-DDD)
   17 U ENDOSULFAN SULFATE
                                                             10 PERCENT MOISTURE
   17 U 4.4'-DDT (P.P'-DDT)
```

RFMARKS

REMARKS

FOOTNOTES *A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

*C-CONFIRMED BY GCMS

1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

SAMPLE AND ANALYSIS MANAGEMENT SYSTEM

EPA-REGION IV ESD, ATHENS, GA. 11/06/90

PESTICIDES/PCB'S DATA REPORT	
*** * * * * * * * * * * * * * * * * * *	
** PROJECT NO. 90-804 SAMPLE NO. 50197 SAMPLE TYPE: SOIL	PROG ELEM: NSF COLLECTED BY: M COHEN **
** SOURCE:	CITY: JEDBERG ST: SC **
** STATION ID: SS-03	COLLECTION START: 09/18/90 1200 STOP: 00/00/00 **
** CASE NUMBER: 14888 SAS NUMBER:	D. NUMBER: X756 **
**	**
*** * * * * * * * * * * * * * * * * * *	
UG/KG ANALYTICAL RESULTS	UG/KG ANALYTICAL RESULTS
9 U ALPHA-BHC	90 U METHOXYCHLOR
9UR BETA-BHC	18 U ENDRIN KETONE
9 U DELTA-BHC	CHLORDANE (TECH. MIXTURE) /1
9 U GAMMA-BHC (LINDANE)	90 U GAMMA-CHLORDANE /2
9 U HEPTACHLOR	90 U ALPHA-CHLORDANE /2
9 U GAMMA-BHC (LINDANE) 9 U HEPTACHLOR 9 U ALDRIN 9 U HEPTACHLOR EPOXIDE	180 U TOXAPHENE
9 U HEPTACHLOR EPOXIDE	90 U PCB-1016 (AROCLOR 1016)
9 U ENDOSULFAN I (ALPHA)	90 U PCB-1221 (AROCLOR 1221)
18 U DIELDRIN	90 U PCB-1232 (AROCLOR 1232)
18 U 4,4'-DDE (P,P'-DDE)	90 U PCB-1242 (AROCLOR 1242)
18 U ENDRIN	90 U PCB-1248 (AROCLOR 1248)
18 U ENDOSULFAN II (BETA)	180 U PCB-1254 (AROCLOR 1254)
18 U 4,4'-DDD (P,P'-DDD) 18 U ENDOSULFAN SULFATE	180 U PCB-1260 (AROCLOR 1260)
18 U ENDOSULFAN SULFATE	11 PERCENT MOISTURE
18 U 4.4'-DDT (P.P'-DDT)	

REMARKS

FOOTNOTES

REMARKS

^{*}COUNCIES***

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

*C-CONFIRMED BY GCMS

1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

11/06/90 PESTICIDES/PCB'S DATA REPORT

PROJECT NO. 90-804 SAMPLE NO. 50198 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN SOURCE: TRIDENT N. LANDFILL CITY: JEDBERG ST: SC COLLECTION START: 09/17/90 1020 STOP: 00/00/00 * * STATION ID: SS-04 ** CASE NUMBER: 14888 ** SAS NUMBER: D. NUMBER: X738 **

**

UG/KG ANALYTICAL RESULTS UG/KG ANALYTICAL RESULTS

9.4U ALPHA-BHC 94 U METHOXYCHLOR 19 Ú 9.4UR BETA-BHC ENDRIN KETONE CHLORDANE (TECH. MIXTURE) /1 9.40 DELTA-BHC GAMMA-CHLORDANE 9.40 GAMMA-BHC (LINDANE) /2 ALPHA-CHLORDANE HEPTACHLOR 94 Ŭ 9.40 TOXAPHENE 9.40 ALDRIN 190 U HEPTACHLOR EPOXIDE PCB-1016 (AROCLOR 1016) PCB-1221 (AROCLOR 1221) 94 U 9.40 ENDOSULFAN I (ALPHA) 94 Ü 9.40 94 U PCB-1232 (AROCLOR 1232) 94 U PCB-1242 (AROCLOR 1242) 94 U PCB-1248 (AROCLOR 1248) 190 U PCB-1254 (AROCLOR 1254) 19 U DIELDRIN 4.4'-DDE (P.P'-DDE) 19 U ENDRIN 19 U ENDOSULFAN II (BETA) 19 U 190 U PCB-1260 (AROCLOR 1260) 19 U 4,4'-DDD (P,P'-DDD) 19 U ENDOSULFAN SULFATE 15 PERCENT MOISTURE

REMARKS ***RFMARKS***

FOOTNOTES

19 U 4.4'-DDT (P.P'-DDT)

^{*}NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *A-AVERAGE VALUE

^{*}A—AVERAGE VALUE TANALYZED *NAT—INTERFERENCES *J—ESTIMATED VALUE TANALYZED FRESENCE OF MATERIAL *K—ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *K—ACTUAL VALUE IS KNOWN TO BE TO BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R—QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

*C—CONFIRMED BY GCMS 1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

11/06/90 DESTICIDES/PCR'S DATA REPORT

** PROJECT NO. 90-804 SAMPLE NO. 50199 SAMPLE TYPE: SOIL ** SOURCE: ** STATION ID: SS-05 ** CASE NUMBER: 14888 SAS NUMBER:	PROG ELEM: NSF COLLECTED BY: M COHEN ** CITY: JEDBERG ST: SC ** COLLECTION START: 09/17/90 1245 STOP: 00/00/00 ** D. NUMBER: X743 **
*** * * * * * * * * * * * * * * * * *	UG/KG ANALYTICAL RESULTS
8.8U HEPTACHLOR EPOXIDE 8.8U ENDOSULFAN I (ALPHA) 18 U DIELDRIN 18 U 4,4'-DDE (P,P'-DDE) 18 U ENDRIN 18 U ENDOSULFAN II (BETA)	88 U METHOXYCHLOR 18 U ENDRIN KETONE CHLORDANE (TECH. MIXTURE) /1 88 U GAMMA-CHLORDANE /2 88 U ALPHA-CHLORDANE /2 180 U TOXAPHENE 88 U PCB-1016 (AROCLOR 1016) 88 U PCB-1221 (AROCLOR 1221) 88 U PCB-1232 (AROCLOR 1222) 88 U PCB-1242 (AROCLOR 1242) 88 U PCB-1248 (AROCLOR 1242) 88 U PCB-1254 (AROCLOR 1254) 180 U PCB-1254 (AROCLOR 1254) 180 U PCB-1260 (AROCLOR 1260) 9 PERCENT MOISTURE

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.
*C-CONFIRMED BY GCMS 1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

11/06/90 PECTI OIDEC (DOD/C DATA DEDODE

PESTICIDES/PCB'S DATA REP *** * * * * * * * * * ** PROJECT NO. 90-804 ** SOURCE: TRIDENT N. L ** STATION ID: SB-01 ** CASE NUMBER: 14888 **	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
	NALYTICAL RESULTS	* * * * * * * * * * * * * * * * * * *
10 U ALPHA-BHC 10UR BETA-BHC 10 U DELTA-BHC 10 U GAMMA-BHC (LIND 10 U HEPTACHLOR 10 U ALDRIN 10 U HEPTACHLOR EPOX 10 U ENDOSULFAN I (A 21 U DIELDRIN 21 U 4,4'-DDE (P,P'- 21 U ENDOSULFAN II (21 U 4,4'-DDD (P,P'- 21 U ENDOSULFAN SULFA	(IDE NLPHA) -DDE) BETA) -DDD) -ATE	100 U METHOXYCHLOR 21 U ENDRIN KETONE CHLORDANE (TECH. MIXTURE) /1 100 U GAMMA-CHLORDANE /2 100 U ALPHA-CHLORDANE /2 210 U TOXAPHENE 100 U PCB-1016 (AROCLOR 1016) 100 U PCB-1221 (AROCLOR 1221) 100 U PCB-1232 (AROCLOR 1232) 100 U PCB-1242 (AROCLOR 1242) 100 U PCB-1248 (AROCLOR 1242) 100 U PCB-1254 (AROCLOR 1254) 210 U PCB-1254 (AROCLOR 1254) 210 U PCB-1260 (AROCLOR 1260) 24 PERCENT MOISTURE

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.
*C-CONFIRMED BY GCMS 1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

SAMPLE AND ANALYSIS MANAGEMENT SYSTEM

EPA-REGION IV ESD, ATHENS, GA. 11/06/90 PESTICIDES/PCB'S DATA REPORT

```
PROJECT NO. 90-804 SAMPLE NO. 50201 SAMPLE TYPE: SOIL
                                                             PROG ELEM: NSF COLLECTED BY: M COHEN
    SOURCE: TRIDENT N. LANDFILL
STATION ID: SB-02
CASE NUMBER: 14888
                                                              CITY: JEDBERG
                                                                                     ST: SC
                                                                                                                  **
                                                             CITY: JEDBERG ST: SC
COLLECTION START: 09/18/90 1135 STOP: 00/00/00
**
                                                                                                                  **
                             SAS NUMBER:
                                                              D. NUMBER: X750
                                                                                                                  * *
                                                                                                                  **
UG/KG ANALYTICAL RESULTS
                                                              UG/KG
                                                                              ANALYTICAL RESULTS
   9.8U ALPHA-BHC
                                                              98 U METHOXYCHLOR
                                                              20 U ENDRIN KETONE
  9.8UR BETA-BHC
                                                                   CHLORDANE (TECH. MIXTURE) /1
GAMMA-CHLORDANE /2
   9.80 DELTA-BHC
   9.80
        GAMMA-BHC (LINDANE)
        HEPTACHLOR
                                                                   ALPHA-CHLORDANE
   9.80
                                                              98 U
        ALDRIN
   9.80
                                                                   TOXAPHENE
                                                             200 U
                                                                   PCB-1016 (AROCLOR 1016)
   9.80
        HEPTACHLOR EPOXIDE
                                                              98 U
                                                                   PCB-1221 (AROCLOR 1221)
PCB-1232 (AROCLOR 1232)
   9.8U
        ENDOSULFAN I (ALPHA)
                                                              98 Ŭ
        DIELDRIN
                                                              98 U
   20 U 4.4'-DDE (P.P'-DDE)
                                                                   PCB-1242 (AROCLOR 1242)
                                                              98 U
   20 U ENDRIN
20 U ENDOSULFAN II (BETA)
                                                                   PCB-1248 (AROCLOR 1248)
                                                              98 U
                                                             200 U PCB-1254 (AROCLOR 1254)
200 U PCB-1260 (AROCLOR 1260)
20 PERCENT MOISTURE
   20 U 4,4'-DDD (P.P'-DDD)
20 U ENDOSULFAN SULFATE
   20 U 4,4'-DDT (P,P'-DDT)
```

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

*C-CONFIRMED BY GCMS

1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

EPA-REGION IV ESD. ATHENS. GA. 11/06/90

```
PESTICIDES/PCR'S DATA REPORT
PROJECT NO. 90-804 SAMPLE NO. 50202 SAMPLE TYPE: SOIL
                                                              PROG ELEM: NSF COLLECTED BY: M COHEN
    SOURCE: TRIDENT N. LANDFILL
STATION ID: SB-03
CASE NUMBER: 14888
                                                              CITY: JEDBERG ST: SC
COLLECTION START: 09/18/90 1225 STOP: 00/00/00
                                                                                                                    **
                             SAS NUMBER:
                                                               D NUMBER X866
                                                                                                                    **
**
                                                                                                                    * *
UG/KG
                   ANALYTICAL RESULTS
                                                               UG/KG
                                                                                ANALYTICAL RESULTS
   9.30 ALPHA-BHC
                                                               93 U METHOXYCHLOR
  9.3UR BETA-BHC
                                                               19 U ENDRIN KETONE
   9.30 DELTA-BHC
                                                                    CHLORDANE (TECH. MIXTURE) /1
   9.30
        GAMMA-BHC (LINDANE)
                                                               93 U
                                                                    GAMMA-CHLORDANE
                                                                                  /2
/2
                                                                    ALPHA-CHI ORDANE
   9.30
        HEPTACHI OR
                                                              93 Ŭ
        ALDRIN
                                                                    TOXAPHENE
   9.30
                                                              190 Ŭ
   9.3Ŭ
                                                                    PCB-1016 (AROCLOR 1016)
        HEPTACHLOR EPOXIDE
                                                              93 Ü
   9.30 ENDOSULFAN I (ALPHA)
                                                               93 Ŭ
                                                                    PCB-1221 (AROCLOR 1221)
                                                                   PCB-1232 (AROCLOR 1232)
PCB-1242 (AROCLOR 1242)
   19 U
        DIFLORIN
                                                               93 U
   19 Ŭ
                                                              93 Ú
        4.4'-DDE (P.P'-DDE)
                                                             93 U PCB-1242 (AROCLOR 1242)
190 U PCB-1254 (AROCLOR 1254)
190 U PCB-1260 (AROCLOR 1260)
   19 Ŭ
        ENDRIN
   19 U ENDOSULFAN II (BETA)
19 U 4,4'-DDD (P.P'-DDD)
19 U ENDOSULFAN SULFATE
                                                                15 PERCENT MOISTURE
   19 U 4.4'-DDT (P.P'-DDT)
```

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.
*C-CONFIRMED BY GCMS
1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

11/06/90

```
PESTICIDES/PCB'S DATA REPORT
PROG ELEM: NSF COLLECTED BY: M COHEN
    PROJECT NO. 90-804 SAMPLE NO. 50203 SAMPLE TYPE: SOIL
    SOURCE: TRIDENT N. LANDFILL
                                                                        ST: SC
                                                           CITY: JEDBERG
                                                                                                              **
    STATION ID: SB-04
                                                           COLLECTION START: 09/17/90 1035 STOP: 00/00/00
* *
                                                                                                              * *
**
    CASE NUMBER: 14888
                            SAS NUMBER:
                                                            D. NUMBER: X739
                                                                                                              **
**
                                                                                                              **
UG/KG
   UG/KG ANALYTICAL RESULTS
                                                                            ANALYTICAL RESULTS
   10 U ALPHA-BHC
                                                           100 U METHOXYCHLOR
   10UR BETA-BHC
                                                           20 U ENDRIN KETONE
   10 U DELTA-BHC
                                                                 CHLORDANE (TECH. MIXTURE) /1
                                                                GAMMA-CHLORDANE /2
   10 U GAMMA-BHC (LINDANE)
   10 U HEPTACHLOR
                                                           100 U ALPHA-CHLORDANE
   10 U
        ALDRIN
                                                           200 U
                                                                TOXAPHENE
        HEPTACHLOR EPOXIDE
                                                                PCB-1016 (AROCLOR 1016)
PCB-1221 (AROCLOR 1221)
   10 U
                                                           100 U
   10 U ENDOSULFAN I (ALPHA)
                                                           100 U
                                                                PCB-1232 (AROCLOR 1232)
PCB-1242 (AROCLOR 1242)
PCB-1248 (AROCLOR 1248)
   20 U DIELDRIN
                                                           100 U
   20 U 4,4'-DDE (P,P'-DDE)
                                                           100 Ü
   20 U ENDRIN
20 U ENDOSULFAN II (BETA)
                                                           100 U
                                                          200 U PCB-1254 (AROCLOR 1254)
200 U PCB-1260 (AROCLOR 1260)
   20 U 4,4'-DDD (P,P'-DDD)
20 U ENDOSULFAN SULFATE
                                                             20 PERCENT MOISTURE
   20 U 4.4'-DDT (P.P'-DDT)
```

REMARKS ***REMARKS***

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.
*C-CONFIRMED BY GCMS
1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

```
PESTICIDES/PCB'S DATA REPORT
PROG ELEM: NSF COLLECTED BY: M COHEN
     PROJECT NO. 90-804
                          SAMPLE NO. 50204 SAMPLE TYPE: SOIL
                                                                                    ST: SC
     SOURCE:
                                                                    CITY: JEDBERG
                                                                                                                              **
                                                                    COLLECTION START: 09/17/90 1310 STOP: 00/00/00
     STATION ID: SB-05
                                                                                                                              * *
     CASE NUMBER: 14888
                                SAS NUMBER:
                                                                     D. NUMBER: X744
                                                                                                                              * *
                                                                                                                              **
UG/KG ANALYTICAL RESULTS
                                                                    UG/KG
                                                                                       ANALYTICAL RESULTS
    11 U ALPHA-BHC
                                                                   110 U METHOXYCHLOR
    11UR BETA-BHC
                                                                    22 U ENDRIN KETONE
                                                                          CHLORDANE (TECH. MIXTURE) /1
    11 U DELTA-BHC
                                                                         GAMMA-CHLORDANE /2
ALPHA-CHLORDANE /2
    11 U GAMMA-BHC (LINDANE)
    11 U HEPTACHLOR
                                                                   110 U
    11 U
         ALDRIN
                                                                   220 U
                                                                         TOXAPHENE
                                                                  110 U PCB-121 (AROCLOR 1016)
110 U PCB-1221 (AROCLOR 1221)
110 U PCB-1232 (AROCLOR 1232)
110 U PCB-1242 (AROCLOR 1242)
110 U PCB-1248 (AROCLOR 1248)
220 U PCB-1254 (AROCLOR 1254)
220 U PCB-1250 (AROCLOR 1260)
    11 U HEPTACHLOR EPOXIDE
    11 U ENDOSULFAN I (ALPHA)
    22 U DIELDRIN
    22 U 4,4'-DDE (P,P'-DDE)
22 U ENDRIN
22 U ENDOSULFAN II (BETA)
    22 U 4,4'-DDD (P,P'-DDD)
22 U ENDOSULFAN SULFATE
22 U 4,4'-DDT (P,P'-DDT)
                                                                     27 PERCENT MOISTURE
```

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.
*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.
*C-CONFIRMED BY GCMS
1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

11/06/90

PESTICIDES/PCB'S DATA REPORT	
*** * * * * * * * * * * * * * * * * * *	
** PROJECT NO. 90-804 SAMPLE NO. 50205 SAMPLE TYPE: SOIL	
** SOURCE: TRIDENT N. LANDFILL ** STATION ID: SB-06	CITY: JEDBERG ST: SC **
** STATION ID: SB-06	
** CASE NUMBER: 14888 SAS NUMBER:	D. NUMBER: X867 **
**	**
**	
UG/KG ANALYTICAL RESULTS	UG/KG ANALYTICAL RESULTS
O OH ALDHA-BUC	OR H. METHOVICH OR
9.8U ALPHA-BHC 9.8UR BETA-BHC	98 U METHOXYCHLOR 20 U ENDRIN KETONE
9.8U DELTA-BHC	CHLORDANE (TECH. MIXTURE) /1
9.8U GAMMA-BHC (LINDANE)	98 U GAMMA-CHLORDANE /2
9.8U GAMMA-BHC (LINDANE) 9.8U HEPTACHLOR	98 U ALPHA-CHLORDANE /2
9.8U ALDRIN	200 U TOXAPHENE
9.80 HEPTACHLOR EPOXIDE	98 U PCB-1016 (AROCLOR 1016)
9.80 ENDOSULFAN I (ALPHA)	98 Ŭ PCB-1221 (AROCLOR 1221)
20 U DIELDRIN	98 Ŭ PCB-1232 (AROCLOR 1232)
20 U 4,4'-DDE (P,P'-DDE)	98 U PCB-1242 (AROCLOR 1242)
20 U ENDRIN	98 U PCB-1248 (AROCLOR 1248)
20 U ENDOSULFAN II (BETA)	200 U PCB-1254 (AROCLOR 1254)
20 U 4,4'-DDD (P,P'-DDD)	200 U PCB-1260 (AROCLOR 1260)
20 U ENDOSULFAN SULFATE	19 PERCENT MOISTURE
20 U 4,4'-DDT (P,P'-DDT)	

REMARKS ***REMARKS***

^{*}FOUINGTES***

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL
*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN
*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.
*C-CONFIRMED BY GCMS

1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

11/06/90

PESTICIDES/PCB'S DATA REPORT	
	* * * * * * * * * * * * * * * * * * * *
** PROJECT NO. 90-804 SAMPLE NO. 50206 SAMPLE TYPE:	PROG ELEM: NSF COLLECTED BY: M COHEN **
** SOURCE:	CITY: JEDBERG ST: SC **
** STATION ID: SD-01	COLLECTION START: 09/17/90 1555 STOP: 00/00/00 **
** CASE NUMBER: 14888 SAS NUMBER:	D. NUMBER: X748 **
**	**
10 //C ANALYTICAL DECLUTE	
UG/KG ANALYTICAL RESULTS	UG/KG ANALYTICAL RESULTS
11 U ALPHA-BHC	110 U METHOXYCHLOR
11UR BETA-BHC	21 U ENDRIN KETONE
11 U DELTA-BHC	CHLORDANE (TECH. MIXTURE) /1
11 U GAMMA-BHC (LINDANE)	110 U GAMMA-CHLORDANE /2
11 U HEPTACHLOR	110 U ALPHA-CHLORDANE /2
11 U ALDRIN	210 U TOXAPHENE
11 U HEPTACHLOR EPOXIDE	110 U PCB-1016 (AROCLOR 1016)
11 Ú ENDOSULFAN Í (ALPHA)	110 U PCB-1221 (AROCLOR 1221)
21 U DIELDRIN	110 Ú PČB-1232 (AROCLOR 1232)
21 U 4,4'-DDE (P,P'-DDE)	110 Ú PČB-1242 (AROCLOR 1242)
21 U ENDRIN	110 U PCB-1248 (AROCLOR 1248)
21 U ENDOSULFAN II (BETA)	210 U PCB-1254 (AROCLOR 1254)
21 U 4,4'-DDD (P,P'-DDD)	210 U PCB-1260 (AROCLOR 1260)
21 U ENDOSULFAN SULFATE	25 PERCENT MOISTURE
21 U 4,4'-DDT (P,P'-DDT)	

REMARKS ***REMARKS***

^{*}A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL *K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN *U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

*C-CONFIRMED BY GCMS 1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

SAMPLE AND ANALYSIS MANAGEMENT SYSTEM EPA-REGION IV ESD. ATHENS. GA.

11/06/90 PESTICIDES/PCB'S DATA REPORT PROJECT NO. 90-804 SAMPLE NO. 50207 SAMPLE TYPE: SOIL PROG ELEM: NSF COLLECTED BY: M COHEN SOURCE: TRIDENT N. LANDFILL ST: SC CITY: JEDBERG * * * * COLLECTION START: 09/17/90 1535 STOP: 00/00/00 STATION ID: SD-02 ** ** ** CASE NUMBER: 14888 SAS NUMBER: D. NUMBER: X747 ** ** * * UG/KG ANALYTICAL RESULTS UG/KG ANALYTICAL RESULTS

9.7U ALPHA-BHC 97 U METHOXYCHLOR 19 U ENDRIN KETONE 9.7UR BETA-BHC CHLORDANE (TECH. MIXTURE) /1 9.7U DELTA-BHC GAMMA-CHLORDANE 9.70 GAMMA-BHC (LINDANE) 9.70 HEPTACHLOR 97 II ALPHA-CHLORDANE TOXAPHENE 190 U 9.70 ALDRIN PCB-1016 (AROCLOR 1016) PCB-1221 (AROCLOR 1221) HEPTACHLOR EPOXIDE 97 II 9.70 9. 7Ŭ 97 Ŭ ENDOSULFAN I (ALPHA) PCB-1232 (AROCLOR 1232) PCB-1242 (AROCLOR 1242) 97 Ū 19 U DIELDRIN 19 U 4.4'-DDE (P.P'-DDE) 97 U PCB-1248 (AROCLOR 1248) 19 U ENDRIN 97 U 190 U PCB-1254 (AROCLOR 1254) 190 U PCB-1260 (AROCLOR 1260) 19 Ü ENDOSULFAN II (BETA) 19 U 4,4'-DDD (P,P'-DDD) 19 Ú ENDOSULFAN SULFATE 18 PERCENT MOISTURE 19 U 4.4'-DDT (P.P'-DDT)

REMARKS

REMARKS

FOOTNOTES *A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*A-AVERAGE VALUE TO TANALIZED THE "NATION ERFERENCES TO THE STIMATED VALUE TO THE PRESUMENT OF THE STIME OF MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

*C-CONFIRMED BY GCMS

1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

```
PESTICIDES/PCB'S DATA REPORT
PROJECT NO. 90-804. SAMPLE NO. 50208. SAMPLE TYPE SOTI
                                                                     PROG FLEM: NSE COLLECTED BY: M COHEN
     SOURCE: TRIDENT N. LANDFILL
                                                                     CITY: JEDBERG
                                                                                               ST: SC
                                                                                                                               * *
                                                                     COLLECTION START: 09/17/90 1200 STOP: 00/00/00
     STATION ID: SD-03
* *
                                                                                                                               * *
* *
     CASE NUMBER: 14888
                                SAS NUMBER:
                                                                      D. NUMBER X745
                                                                                                                               * *
                                                                                                                               **
UG/KG ANALYTICAL RESULTS
                                                                     UG/KG
                                                                                       ANALYTICAL RESULTS
    11 II ALPHA-BHC
                                                                    110 U METHOXYCHLOR
    11UR BETA-BHC
                                                                     23 U ENDRIN KETONE
    11 U DELTA-BHC
                                                                           CHLORDANE (TECH. MIXTURE) /1
                                                                          GAMMA-CHLORDANE
    11 Ŭ
         GAMMA-BHC (LINDANE)
                                                                    110 H
                                                                                          /2
/2
                                                                          ALPHA-CHLORDANE
TOXAPHENE
    11 Ŭ
         HEPTACHLOR
                                                                    110 Ŭ
    11 Ü
         ALDRIN
                                                                    230 U
                                                                          PCB-1016 (AROCLOR 1016)
PCB-1221 (AROCLOR 1221)
    11 Ŭ
         HEPTACHLOR EPOXIDE
                                                                    110 U
    11 Ŭ
         ENDOSULFAN I (ALPHA)
                                                                    110 Ü
                                                                   110 U PCB-1221 (AROCLOR 1221)
110 U PCB-1232 (AROCLOR 1232)
110 U PCB-1242 (AROCLOR 1242)
110 U PCB-1248 (AROCLOR 1248)
230 U PCB-1254 (AROCLOR 1254)
230 U PCB-1260 (AROCLOR 1260)
    23 U DIELDRIN
23 U 4,4'-DDE (P,P'-DDE)
    23 U ENDRIN
23 U ENDOSUL
         ENDOSULFAN II (BETA)
   23 U 4,4'-DDD (P,P'-DDD)
23 U ENDOSULFAN SULFATE
23 U 4,4'-DDT (P,P'-DDT)
        4,4'-DDD (P,P'-DDD)
ENDOSULFAN SULFATE
                                                                       30 PERCENT MOISTURE
```

REMARKS

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

**A-AVERAGE VALUE IS **NATURE AND ANALYZED **NATURE THE PRESENCE OF MATERIAL **A-AVERAGE VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN **L-ACTUAL VALUE IS KNOWN TO BE REATER THAN VALUE GIVEN **U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

**R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

**C-CONFIRMED BY GCMS 1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

11/06/90

```
PESTICIDES/PCB'S DATA REPORT
CITY: JEDBERG ST: SC
COLLECTION START: 09/17/90 1135 STOP: 00/00/00
    SOURCE: TRIDENT N. LANDFILL
                                                                                                                        **
     STATION ID: SD-04
* *
                                                                                                                        * *
    CASE NUMBER: 14888
                              SAS NUMBER:
                                                                  D. NUMBER: X742
                                                                                                                        **
**
**
                                                                                                                        **
UG/KG
   UG/KG ANALYTICAL RESULTS
                                                                                   ANALYTICAL RESULTS
   11 U ALPHA-BHC
11UR BETA-BHC
                                                                110 U METHOXYCHLOR
                                                                 21 U ENDRIN KETONE
    11 U DELTA-BHC
                                                                       CHLORDANE (TECH. MIXTURE) /1
    11 U GAMMA-BHC (LINDANE)
                                                                      GAMMA-CHLORDANE /2
   11 U HEPTACHLOR
                                                                110 U ALPHA-CHLORDANE
   11 U
         ALDRIN
                                                                210 U
                                                                      TOXAPHENE
                                                                      PCB-1016 (AROCLOR 1016)
PCB-1221 (AROCLOR 1221)
   11 U HEPTACHLOR EPOXIDE
                                                                110 U
   11 Ú
         ENDOSULFAN I (ALPHA)
                                                                110 U
                                                                110 U PCB-1221 (AROCLOR 1221)
110 U PCB-1232 (AROCLOR 1232)
110 U PCB-1242 (AROCLOR 1242)
110 U PCB-1248 (AROCLOR 1248)
210 U PCB-1254 (AROCLOR 1254)
210 U PCB-1260 (AROCLOR 1260)
         DIELDRIN
   21 U
   21 U 4,4'-DDE (P,P'-DDE)
      U ENDRIN
      U ENDOSULFAN II (BETA)
   21 U 4.4'-DDD (P.P'-DDD)
21 U ENDOSULFAN SULFATE
                                                                   25 PERCENT MOISTURE
   21 U 4,4'-DDT (P.P'-DDT)
```

REMARKS

FOOTNOTES

*A-AVERAGE VALUE *NA-NOT ANALYZED *NAI-INTERFERENCES *J-ESTIMATED VALUE *N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

*K-ACTUAL VALUE IS KNOWN TO BE LESS THAN VALUE GIVEN *L-ACTUAL VALUE IS KNOWN TO BE GREATER THAN VALUE GIVEN

*U-MATERIAL WAS ANALYZED FOR BUT NOT DETECTED. THE NUMBER IS THE MINIMUM QUANTITATION LIMIT.

*R-QC INDICATES THAT DATA UNUSABLE. COMPOUND MAY OR MAY NOT BE PRESENT. RESAMPLING AND REANALYSIS IS NECESSARY FOR VERIFICATION.

*C-CONFIRMED BY GCMS

1. WHEN NO VALUE IS REPORTED, SEE CHLORDANE CONSTITUENTS.

REMARKS

SAMPLE AND ANALYSIS MANAGEMENT SYSTEM EPA-REGION IV ESD, ATHENS, GA.

11/06/90 DESTICIONES /DOR/S DATA DEDORT

PESTICIDES/PCB'S DATA REPORT *** * * * * * * * * * * * * * * * * *	PROG ELEM: NSF COLLECTED BY: M COHEN ** CITY: JEDBERG ST: SC ** COLLECTION START: 09/17/90 0740 STOP: 00/00/00 ** D. NUMBER: X737 **
UG/L ANALYTICAL RESULTS	UG/L ANALYTICAL RESULTS
O.OSU ALPHA-BHC O.OSU BETA-BHC O.OSU DELTA-BHC O.OSU GAMMA-BHC (LINDANE) O.OSUJ HEPTACHLOR O.OSU HEPTACHLOR O.OSU ENDOSULFAN I (ALPHA) O.10U DIELDRIN O.10UJ 4,4'-DDE (P,P'-DDE) O.10U ENDRIN O.10U ENDOSULFAN II (BETA) O.10U 4,4'-DDD (P,P'-DDD) O.10U 4,4'-DDT (P,P'-DDD) O.10U 4,4'-DDT (P,P'-DDD) O.10U 4,4'-DDT (P,P'-DDT)	0.50U METHOXYCHLOR 0.10U ENDRIN KETONE CHLORDANE (TECH. MIXTURE) /1 0.50U GAMMA-CHLORDANE /2 1.0U TOXAPHENE 0.50U PCB-1016 (AROCLOR 1016) 0.50U PCB-1221 (AROCLOR 1221) 0.50U PCB-1232 (AROCLOR 1232) 0.50U PCB-1242 (AROCLOR 1242) 0.50U PCB-1248 (AROCLOR 1242) 0.50U PCB-1248 (AROCLOR 1248) 1.0U PCB-1254 (AROCLOR 1254) 1.0U PCB-1260 (AROCLOR 1260)

REMARKS ***REMARKS***

^{**}C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**N-NOT ANALYZED **NAI-YZED **NAI-INTERFERENCES **J-ESTIMATED VALUE **N-PRESUMPTIVE EVIDENCE OF PRESENCE OF MATERIAL

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GCMS

**C-CONFIRMED BY GC

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IV

ENVIRONMENTAL SERVICES DIVISION ATHENS, GEORGIA 30613

SISB/SAS ATLANTA, GA.

MEMORANDUM

DATE:

September 7, 1990

SUBJECT:

Trident North Landfill, Jedburg, SC, SSI Study

Plan

FROM:

Pat Stamp //

Laboratory Quality Control Specialist
Laboratory Evaluation & Quality Assurance Section

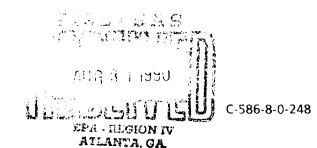
TO:

Al Hanke, Chief 6 Site Assessment Section Waste Programs Branch Waste Management Division

THRU:

Wade Knight, Chief WC

Laboratory Evaluation & Quality Assurance Section


We have reviewed the subject document and have the following comments:

1. Table 1

- The sample codes all begin with the letters "JL" here, but they are shown as "TL" on Figure 3.
- b. Note the corrections marked in red.

1927 LAKESIDE PARKWAY SUITE 614 TUCKER, GEORGIA 30084 404-938-7710

August 27, 1990

Mr. A.R. Hanke Waste Programs Branch Waste Management Division Environmental Protection Agency 345 Courtland Street, N. E. Atlanta, Georgia 30365

Subject:

Study Plan

Revision 0

Trident North Landfill

Jedburg, Dorchester-Berkeley County, South Carolina

TDD No. F4-9007-35

Dear Mr. Hanke:

Enclosed please find one copy of the Screening Site Study Plan, Revision 0, for Trident North Landfill in Jedburg, Dorchester-Berkeley County, South Carolina.

If you have any questions or comments, please contact me at NUS Corporation.

Very truly yours,

Mitch Cohen, P.E. Project Manager

MC/jec

Enclosure (1)

Approved:

Solark

STUDY PLAN SCREENING SITE INSPECTION, PHASE II TRIDENT NORTH LANDFILL JEDBURG, BERKELEY/DORCHESTER COUNTY, SOUTH CAROLINA EPA ID #: SCD980558233

Prepared Under TDD No. F4-9007-35 CONTRACT NO. 68-01-7346

Revision 0

FOR THE

WASTE MANAGEMENT DIVISION
U.S. ENVIRONMENTAL PROTECTION AGENCY

AUGUST 27, 1990

NUS CORPORATION SUPERFUND DIVISION

Prepared By

Mitch Cohen, P.E.

Project Manager

Reviewed By

Assistant Regional

Project Manager

Approved By

Phil Blackwell

Regional Project Manager

NOTICE

The information in this document has been funded wholly by the United States Environmental Protection Agency (EPA) under Contract Number 68-01-7346 and is considered proprietary to the EPA.

This information is not to be released to third parties without the expressed or written consent of the EPA.

TABLE OF CONTENTS

Sect	<u>ion</u>		<u>Page</u>
1.0	INTR	ODUCTION	1
1.1 1.2 1.3 1.4 1.5 1.6	Sched Perso Perm Site H	e of Work dule	1 2 2 2 4 4 5
2.0	GEOP	PHYSICAL SCREENING	6
3.0	FIELD	ANALYTICAL SUPPORT PROJECT (FASP)	7
4.0	SAME	PLING INVESTIGATION	8
4.1 4.2 4.3 4.4 4.5 4.6 4.7	Groui Existi Privat Surfa Analy	ampling ndwater Sampling ng Monitoring Well Sampling te Well Sampling nce Water and/or Sediment Sampling ytical and Container Requirements	8 8 13 13 13
REFE	RENCES	S	15
		A Geophysical Methods B Field Analytical Support Project (FASP)	
		FIGURES	
Figur Figur Figur	re 2	Site Location Map Site Layout Map Sample Location Map	3 11 12
		TABLES	
Table	e 1	Sample Locations and Rationale	9

STUDY PLAN

SCREENING SITE INSPECTION, PHASE II

TRIDENT NORTH LANDFILL

JEDBURG, BERKELEY/DORCHESTER COUNTY, SOUTH CAROLINA

EPA ID #SCD980558233

TDD NO. F4-9007-35

1.0 INTRODUCTION

The NUS Corporation Region 4 Field Investigation Team (FIT) has been tasked by the U.S. Environmental Protection Agency (EPA), Waste Management Division to conduct a Screening Site Inspection (SSI) at the Trident North Landfill facility in Dochester/Berkeley County, South Carolina. The inspection will be performed under the authority of the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA). Tasks will be performed to satisfy the requirements stated in Phase II of Technical Directive Document (TDD) number F4-9007-35.

1.1 Objectives

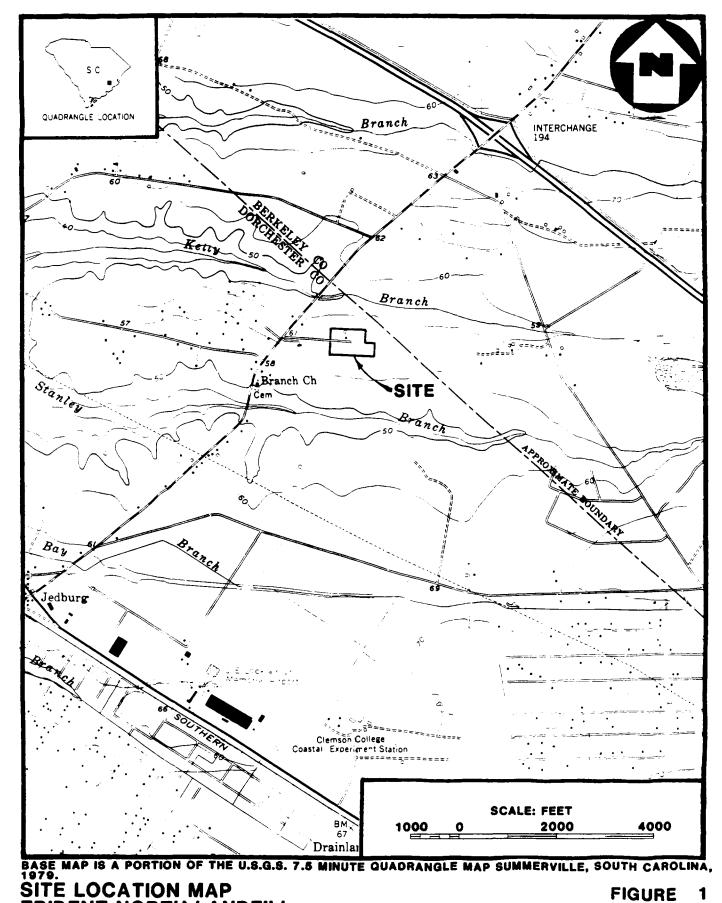
The objectives of this Phase II inspection will be to determine the nature of contaminants present at the site and to determine if a release of these substances has occurred or may occur. Further, this inspection will seek to determine the possible pathways by which contamination could migrate from the site and the populations and environments it would potentially affect. Through these objectives, a recommendation will be made regarding future activities at the site.

Specific elements are:

- Obtain information to prepare a site-specific preliminary HRS
- Provide EPA the necessary information to make decisions on any other actions warranted at the site.

1.2 Scope of Work

The scope of this investigation will include the following activities:


- Obtain and review background materials relevant to HRS scoring of site
- Obtain aerial photographs and maps of site, if possible
- Obtain information on local water systems
- Evaluate target populations associated with the groundwater, surface water, air and onsite exposure pathways
- Conduct a survey of private wells
- Determine location and distance to nearest potable well
- Develop a site sketch
- Conduct a geophysical screening of site to determine whether buried drums may be present,
- Collect environmental samples

1.3 Schedule

To be determined

1.4 Personnel

Project Manager - Mitch Cohen
Other personnel as required

TRIDENT NORTH LANDFILL
JEDBURG, DORCHESTER / BERKELEY
COUNTY, SOUTH CAROLINA

FIGURE

1.5 Permits and Authorization Requirements

EPA is responsible for obtaining access to the site and permission to take photographs of site. In addition, EPA is responsible for all permits which may be required to accomplish this task.

1.6 Site History and Description

The Trident North/BFI Jedburg Landfill is located along State Road 16 approximately 1 mile southwest of Interstate 26. The facility lies on the Berkeley-Dorchester County line with about 60% of the landfill located in Dorchester County. The landfill occupies approximately 150 acres (Ref. 1). The geographic coordinates for the center of the landfill are 80°12′49″W longitude and 33°04′12″N latitude (Ref. 2).

Prior to 1979, the site was cultivated agricultural land (Ref. 1). The site lies atop a ridge which runs east-west and which gently slopes to the south and north. Two creeks act as northern and southern boundaries. Kelly Branch is located to the north and drains into Cypress Swamp 1.9 miles downstream. Stanley Branch is located to the south and drains into Cypress Swamp about 2 miles downstream. Runoff from the site may flow into either Kelly Branch or Stanley Branch.

Most of the waste present in the landfill is inert bulk materials such as lumber, concrete, metal bands, cardboard, shingles, tires, empty drums and asbestos. Department records show that on two occasions the landfill was allowed to accept fuel oil sludges and on one occasion burial of a wastewater treatment plant sludge was permitted. In 1980, permission was granted by the state for burial of grinding sludge from a ball-bearing manufacturer. The grinding sludge reportedly contained alloys of steel, chromium, molybdenum and vanadium (Ref. 1).

Since 1984, the Berkeley County side of the landfill has been permitted (DWP-129) for the disposal of domestic waste. No hazardous wastes are allowed to be buried in this section of the landfill as per permit requirements. There have been no remedial or removal actions associated with the Trident North Landfill (Ref. 1).

The 150 acre site of the Trident North Landfill (BFI Jedburg Landfill) was originally owned by Mr. J.M. Hodge (Rt. 4, Box 329, Summerville, SC 29483). Mr. Hodge sold the property to Landent Realty (A Partnership, 237 Confederate Circle, Charleston, SC 29407) in 1979.

Landent Realty leased the property to Trident Services, Inc. (1934 Summerville Avenue, Charleston Heights, SC 29405) for use as an Industrial Waste Landfill. Trident Services, Inc. was granted a permit to operate an industrial waste landfill (IWP-169) by the state on August 30, 1979. Trident Services operated the landfill from 1979 until some time in 1980 when Browning-Ferris Industries of South Atlantic purchased Trident Services and assumed operation of the landfill. Browning-Ferris Industries (BFI) operated the landfill under the industrial waste permit (IWP-163) from 1980 until a permit modification to accept domestic waste was granted for the Dorchester County portion of the landfill in 1984. In 1987, the state issued a new permit, DWP-129, for domestic waste disposal at the landfill (Ref. 1).

Since 1980, the shallow groundwater has been monitored at the site. Problems with the groundwater have been detected beginning with elevated levels of chromium in 1981. In 1988, monitoring well samples were tested for volatile organic compounds because of elevated total organic carbon (TOC) results with no volatile organics detected. No testing was done for semivolatile compounds or pesticides at this time. TOC is an indication of the non-volatile Organic Carbon content. Levels of heavy metals, such as chromium, have not exceeded Federal Drinking Water standard since the 1981 incident.

1.7 Regional Hydrogeology

The Trident North Landfill is located in the Atlantic Coastal Plain Physiographic Province and the Atlantic and Gulf Coastal Plain hydrogeologic setting (Ref. 3, plate 28; 4, pp. 270, 271). The climate of the area is characterized by moderate temperatures and humid days (Ref. 5, p. 7). The net annual precipitation is 5 inches and the maximum 1-year, 24-hour rainfall is 3.5 inches (Ref. 6, pp. 43, 63; 7).

The landfill is underlain by surficial soils that consist of discontinous layers of sand and clay with minor amounts of shell and limestone extending to a depth of approximately 30 feet below land surface (bls) (Ref. 5, pp. 12, 13, 41). These surficial soils and overlying Recent unconsolidated materials comprise the shallow aquifer, which occurs under water-table conditions. The depth to groundwater in the shallow sands is approximately 20 feet bls (Ref. 1, p. 3). Transmissivities of the shallow-aquifer are generally less than 770 square feet per day (ft2/day) (Ref. 5, p. 43). The hydraulic conductivity for sediments similar to these is 1.0×10^{-3} cm/sec (Ref. 8, p. 29).

The Cooper Formation occurs beneath the surficial soils and is an impermeable sandy limestone that acts as a confining zone between the shallow aquifer and the lower Santee Limestone aquifer (Ref. 5, p. 41). The Cooper Formation is approximately 150 feet thick in the landfill area (Ref. 5, p. 12, 13).

The hydraulic conductivity for sediments similar to these is 1.0×10^{-7} cm/sec (Ref. 8, p. 29). Formations that underlie the Cooper Formation, in descending order are the Santee Limestone, the Black Mingo Formation, the Peedee Formation, the Black Creek Formation, and the Middendorf Formation (Ref. 5, p. 13). The Santee Limestone is a fossiliferous, slightly glauconitic limestone approximately 110 feet thick (Ref. 5, pp. 13, 18). The zone dips southward at 8 feet per mile and increases in thickness toward the south (Ref. 5, p. 18). The Black Mingo Formation consists of sand and limestone in the upper portion of the stratigraphic column, and clay and shale in its lower half (Ref. 5, p. 17). The formation is approximately 340 feet thick, with the base of the zone 565 feet bls in this area (Ref. 5, p. 13). The Peedee Formation is represented by calcareous clays and sands that are approximately 350 feet thick (Ref. 5, pp. 13, 17). The Black Creek Formation consist of interbedded sands and clays that are 625' thick (Ref. 5, pp. 13, 17). the Middendorf Formation is composed of clays in the lower half with silty sand in the upper. It is encountered at a depth of 1520 feet bls in the landfill area (Ref. 5, pp. 11, 13, 17).

The primary aquifer used in this area is the groundwater from the Santee Limestone and Black Mingo Formation (Ref. 5, pp. 30-34). A significant amount of hydraulic interconnection occurs between the base of the Santee and upper half of the Black Mingo Formation in this area (Ref. 5, p. 32). Most wells are of open-hole construction and penetrate into the upper sand beds of the Black Mingo Formation (Ref. 5, p. 31). These wells are under artesian conditions due to the overlying confining clays of the Copper Formation and the basal Black Mingo (Ref. 5, p. 30). The water level is approximately 20 feet bls in the landfill area (Ref. 5, p. 33). Water yields of 432,000 gals/day have been reported from wells in this area (Ref. 5, p. 31). The hydraulic conductivity for sediments similar to these in approximately 1.0×10^{-5} cm/sec (Ref. 8, p. 29).

Groundwater does occur in the deeper formations, but due to the quantity of water and expense involved in completing wells, these aquifers are not used in the Summerville area (Ref. 5, pp. 27-30). Rainfall is the main source of recharge to the aquifer (Ref. 5, p. 32). Water quality from the Santee Limestone-Black Mingo Formations aquifer is generally good in this area, but deteriorates downgradient due to increasing amounts of sodium, fluoride, and chlorides (Ref. 5, pp. 44, 53).

2.0 GEOPHYSICAL SCREENING

A geophysical screening will be conducted at the site for the purpose of delineating areas for FASP and CLP sampling around the periphery of the landfill. It is felt that geophysical techniques provide a viable alternative for locating anomalous features associated with waste disposal in landfills. The most suitable geophysical techniques applicable for this investigation is believed to be

electromagnetics. If proper subsurface conditions exist at the site this technique will provide data needed to accurately define areas of anamalous groundwater conductivity. The results will then be used in determining optimum sampling locations.

Instruments to be used are the Geonics EM31-D and EM34-S non-contacting ground conductivity meters. A summary of geophysical methods is provided in Appendix A.

3.0 FIELD ANALYTICAL SUPPORT PROJECT (FASP)

The FIT 4 Field Analytical Support Project (FASP) will be used in this study to help determine locations for the collection of samples for CLP analysis. Soil-gas probes will be installed in a grid pattern complementing the geophysical screening. Initial screening of the soil gas will be performed with a photo-ionization survey meter (HNU HW-101, Photovac TIP II, or similar instrument). At selected soil-gas probe locations, samples will be collected for analysis in the field by portable GC (Photovac 10S50, 10A10, or OVA 128 in GC mode). Field GC analysis will provide tentative identification and estimated quantitation for a short list of volatile organic compounds (benzene, toluene, and xylenes). These two procedures are useful as indicators of organic contamination. Installation of soil-gas probes and soil sample collection will be performed using the Geo-Probe (see Appendix B).

Up to 20 surface and/or subsurface samples will be collected for analysis for chromium content at the FIT 4 base lab. Analytical methods are presented in Appendix B. FASP sample locations will be chosen based on drainage pathways, disposal areas, file material and geophysical screening results. Samples are to be prepared by microwave digestion and analyzed by flame atomic absorption spectrophotometry.

FASP data is a decision-making tool used in selecting CLP sample locations. Other considerations such as file material and observation are included in choosing sample locations. Data generated from the screening survey are not intended to support listing or enforcement action. The primary purpose is to aid in the direction of CLP sampling activities. With the support of CLP results, screening data may also be used to help characterize areal extent of contamination. The data can be used to support health and safety decisions regarding use of personal protective equipment.

In order to assure a quick turn-around time, limited tentative results may be reported with appropriate QA/QC qualifiers. Results will be reported directly to the FIT project manager.

4.0 SAMPLING INVESTIGATION

The sampling investigation will include the collection of a total of 16 environmental samples consisting of surface soil, subsurface soil, monitoring well and private well samples. All of the samples except for the private well samples will be collected onsite. The collection and analysis of environmental samples will help define and characterize potential source areas of contamination. Analytical results will be compared with results collected at background/control locations. Samples will be analyzed for extractable and purgeable organic compounds, pesticides, PCBs, cyanides and metals. Analysis will be performed under the Contract Laboratory Program (CLP).

4.1 Surface Soil Sampling

Five surface soil samples will be collected as part of the investigation to determine the presence and concentrations of contaminants at depths ranging from between 0 and 2 feet. Two samples will be collected from each of the drainage ditches. An additional sample will be collected along the western property boundary to establish background/control conditions. Sample code, and descriptions may be found on Table 1 and are shown on Figure 3.

4.2 Subsurface Soil Sampling

Five subsurface soil samples will be collected during the investigation to determine the presence and concentrations of contaminants at depths ranging from between 2 and 10 feet. A subsurface soil sample will be collected at the same locations as those designed for surface soil, namely the two drainage ditches and a background/control location. Sample codes and descriptions may be found on Table 1 and are shown on Figure 3.

4.3 Existing Monitoring Well Sampling

Approximately four of eight existing monitoring wells will be sampled to determine the presence and concentration of contaminants that might have, or continue to migrate to groundwater. It appears that groundwater flow is split both north and south towards Kelly Branch and Stanley Branch. One well along the north property boundary, two wells along the south property boundary and a background well along the west property boundary were therefore selected. Since groundwater has been encountered at between about 5 and 20 feet below land surface, it does not appear that the installation of temporary monitoring wells is necessary (Ref. 9). Sample codes and descriptions may be found on Table 1 and are shown on Figure 3.

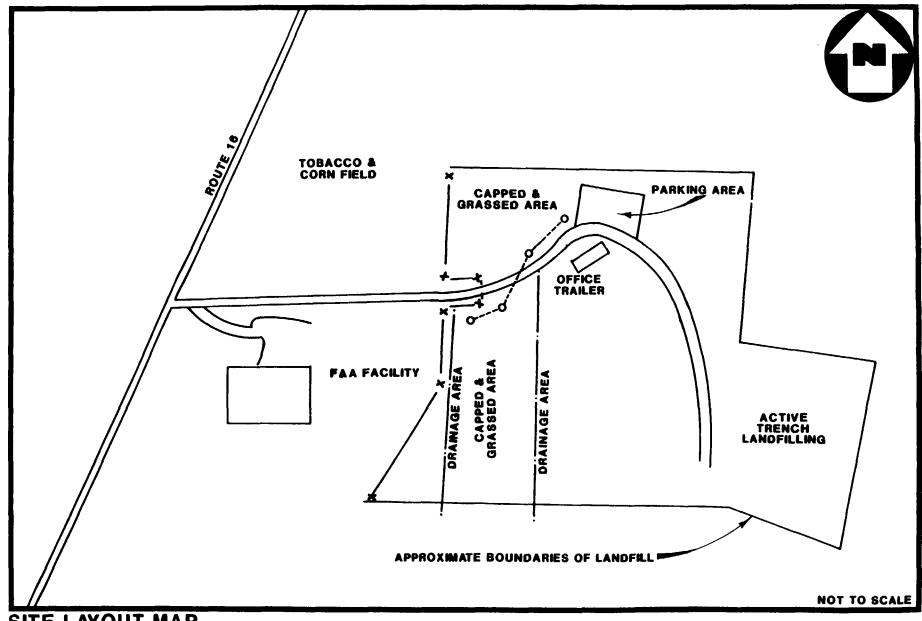
TABLE 1

SAMPLE LOCATIONS AND RATIONALE TRIDENT NORTH LANDFILL JEDBURG, DORCHESTER/BERKELEY COUNTIES, SOUTH CAROLINA

Sample Code	Sample Type	Location	Rationale
JL-SS-01	Surface Soil	Sample to be collected along the southwest boundary of the landfill property, 0-2 feet below land surface	Establish background conditions
JL-SS-02	Surface Soil	Sample to be collected at the southern end of the western drainage ditch at 0-2 feet bls	Determine the preence or absence of contamination
JL-SS-03	Surface Soil	Sample to be collected at the northern end of the western drainage ditch at 0-2 feet bls	Determine the preence or absence of contamination
JL-SS-04	Surface Soil	Sample to be collected at the northern end of the western drainage dithc at 0-2 feet bls	Determine the preence or absence of contamination
JL-SS-05	Surface Soil	Sample to be collected at the southern end of the eastern drainage ditch at 0-2 feet bls	Determine the preence or absence of contamination
JL-SB-01	Subsurface Soil	Sample to be collected along the southwest boundary of the landfill property 2-10 feet below land surface (bls)	Establish background conditions
JL-SB-02	Subsurface Soil	Sample to be collected at the norther end of the western drainage ditch at 2-10 feet bls	Determine the presence or absence of contaminants
JL-SB-03	Subsurface Soil	Sample to be collected at the northern end of the western drainage ditch at 2-10 feet bls	Determine the presence or absence of contaminants
JL-SB-04	Subsurface Soil	Sample to be collected a the northern end of the eastern drainage ditch at 2-10 feet bls.	Determine the presence or absence of contaminants

JL - Trident North Landfill

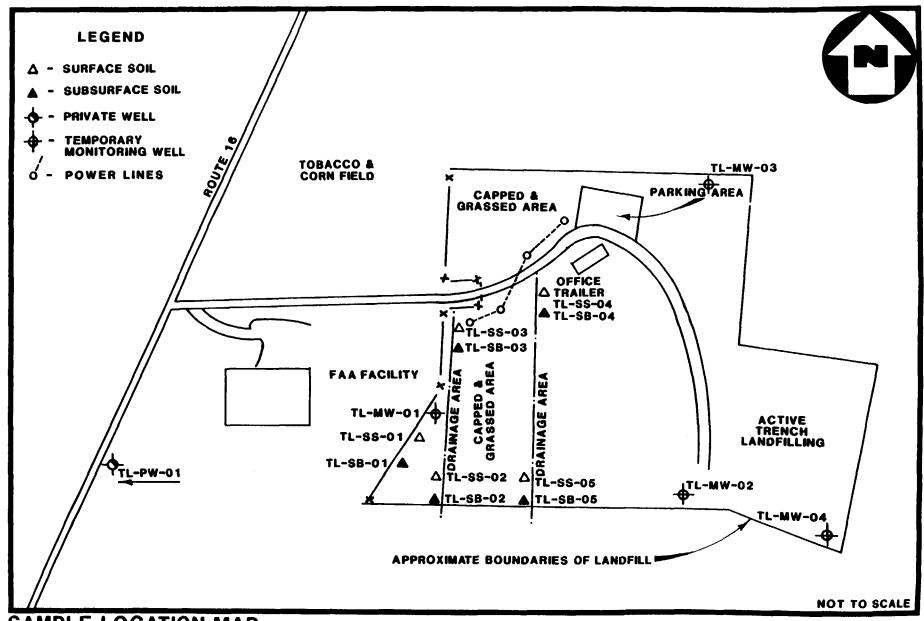
SS - Surface Soil
SB - Subsurface Soil
MW - Monitoring Well
PW - Private Well


TABLE 1

SAMPLE LOCATIONS AND RATIONALE TRIDENT NORTH LANDFILL JEDBURG, DORCHESTER/BERKELEY COUNTIES, SOUTH CAROLINA

Sample Code	Sample Type	Location	Rationale
JL-SB-05	Subsurface Soil	Sample to be collected at the southern end of the eastern draiange ditch at 2-10 feet bls.	Determine the presence or absence of contaminants
JL-MW-01	Monitoring Well	Sample to be collected from an existing monitoring well located along the west landfill property boundary	Establish background conditions
JL-MW-02	Monitoring Well	Sample to be collected from an existing monitoring well located along the southern landfill proerty boundary	Determine the presence or absence of contaminants
JL-MW-03	Monitoring Well	Sample to be collected from an existing monitoring well located along the southern landfill property boundary	Determine the presence or absence of contaminants
JL-MW-04	Monitoring Well	Sample to be collected from an existing monitoring well located along the southern landfill property boundary	Determine the presence or absence of contaminants
JL-PW-01	Private Well	Sample to be collected from a private well located as near to and west of the landfill as possible	Determine the presence or absence of contaminants
JL-PW-02	Private Well	Sample to be collected from a private well located as near to and east of the landfill as possible.	Determine the presence or absence of contaminants

JL - Trident North Landfill


SS - Surface Soil SB - Subsurface Soil MW - Monitoring Well PW - Private Well

SITE LAYOUT MAP
TRIDENT NORTH LANDFILL
JEDBURG, DORCHESTER / BERKELEY
COUNTY, SOUTH CAROLINA

FIGURE 2

SAMPLE LOCATION MAP TRIDENT NORTH LANDFILL JEDBURG, DORCHESTER / BERKELEY COUNTY, SOUTH CAROLINA

FIGURE 3

4.4 Private Well Sampling

Two private wells will be sampled in order to determine the presence and concentrations of contaminants in groundwater used as a drinking supply. The nearest available eastern and western most residents with private wells will be chosen for sampling.

4.5 Surface Water and/or Sediment Sampling

It does not appear that surface water or sediment sampling is necessary since overland flow over the sandy soils surrounding the facility would be greatly reduced. If this does not prove to be the case, these samples will be added during field activities.

4.6 Analytical and Container Requirements

Sample containers used will be in accordance with the requirements specified in the Engineering Support Branch Standard Operating Procedures and Quality Assurance Manual; United States Environmental Protection Agency, Region IV, Environmental Services Division, April 1, 1986. The following is a description of the analysis and types of containers required.

<u>Analyses</u>	Container	Preservatives**
Ext. Organics, Water	1 gal., amber glass*	None
Volatile Organics, Water	40 ml., glass vial*	4 drops conc. HCL to pH < 2
Metals, Water	1 liter, plastic	50% HNO ₃ to pH < 2
Cyanide, Water	1 liter, plastic	NaOH to pH >12
Ext. Organics, Soil/Sediment	8 oz., glass*	None

Volatile Organics	4 oz., glass*	None
Soil/Sediment		
Inorganics,	8 oz., glass*	None
Soil/Sediment		

- * Sample container lids are lined with teflon.
- ** All samples will be iced to 4°C upon collection.

4.7 <u>Methodology</u>

All sample collection, sample preservation, and chain-of-custody procedures used during this investigation will be in accordance with the standard operating procedures as specified in Section 3 and 4 of the Engineering Support Branch Standard Operating Procedures and Quality Assurance Manual; United States Environmental Protection Agency, Region IV, Environmental Services Division, April 1, 1986.

All laboratory analyses and laboratory quality assurance procedures used during this investigation will be in accordance with standard procedures and protocols as specified in the <u>Analytical Support</u> <u>Branch Operations and Quality Assurance Manual</u>; United States Environmental Protection Agency, Region IV, Environmental Services Division; revised June 1, 1985 or as specified by the existing United States Environmental Protection Agency standard procedures and protocols for the contract analytical laboratory program.

REFERENCES

- 1. David W. Nix, Bureau of Solid and Hazardous Waste Management, South Carolina Department of Health and Environmental Control, "Preliminary Assessment Update Report Trident North Landfill SCD900558233 Berkeley/Dorchester County South Carolina," prepared for EPA (March 10, 1989).
- 2. U.S. Geological Survey, 7.5 minute series Topographical Quadrangle Maps of South Carolina: Summerville 1958 (Photorevised 1979), Ridgeville 1979, Summerville NW 1958, Pringletown 1979, scale 1:24,000.
- 3. Oscar E. Meinger, The Occurrence of Groundwater in the United States, Geological Water-Supply Paper 489, United States GPO (Washington 1923).
- 4. Linda Aller, et al, DRASTIC: <u>A Standardized System for Evaluating Groundwater Pollution Potential Using Hydrogeologic Setting</u>, U. S Environmental Protection Agency, (Ada, Oklahoma, 1987).
- 5. A. Drennan Park, the Groundwater Resources of Charleston, Berkeley, and Dorchester Counties, South Carolina, Water Resources Commission Report Number 139, State of South Carolina, 1985.
- 6. U.S. Department of Commerce, <u>Climatic Atlas of the United States</u>, (Washington, D.C.: GPO, June 1968) Reprint: 1983 National Oceanic and Atmospheric Administration.
- 7. U.S. Department of Commerce, <u>Rainfall Frequency Atlas of the United States</u>, Technical Paper No. 40, (Washington, D.C.: GPO 1961).
- 8. R. Allan Freeze, John A. Cherry, <u>Groundwater</u>, Englewood Cliffs, New Jersey: (Prentice Hall, Inc. 1979).
- 9. Patrick A. Shirley, Manager, Hydrogeologic Services, General Engineering Laboratories, letter to Jim Dowland, Regional Landfill Manager, Browing-Ferris Industries, May 28, 1987. Subject: Analysis of monitoring well samples.

APPENDIX A

SUMMARY OF GEOPHYSICAL METHODS

The following sections are from "Geophysical Techniques for Sensing Buried Wastes and Waste Migration" by Glaccum, R. A., and M. R. Noel, August, 1983, Technos, Inc., for Environmental Monitoring Systems Laboratory, ORD., USEPA, Las Vegas, Nevada.

ELECTROMAGNETICS (EM)*

The electromagnetic (EM) method provides a means of measuring the electrical conductivity of subsurface soil, rock, and ground water. Electrical conductivity is a function of the type of soil and rock, its porosity, its permeability, and the fluids which fill the pore space. In most cases the conductivity (specific conductance) of the pore fluids will dominate the measurement. Accordingly, the EM method is applicable both to assessment of natural geohydrologic conditions and to mapping of many types of contaminant plumes: Additionally, trench boundaries, buried wastes and drums, as well as metallic utility lines can be located with EM techniques.

Natural variations in subsurface conductivity may be caused by changes in soil moisture content, ground water specific conductance, depth of soil cover-over-rock, and thickness of soil and rock layers. Changes in basic soil or rock types, and structural features such as fractures or voids may also produce changes in conductivity. Localized deposits of natural organic, clay, sand, gravel, or saltrich zones will also affect subsurface conductivity:

[&]quot;The term electromagnetic has been used in contemporary literature as a descriptive term for other geophysical methods; including GPR and metal detectors which are based on electromagnetic principles. However, this document will use electromagnetic (EM) to specifically imply the measurement of subsurface conductivities by low-frequency electromagnetic induction. This is in keeping with the traditional-use of the term in the geophysical industry from which the EM methods originated. While-the-authors-recognize that there-are-many electromagnetic systems and manufacturers, the discussion in this section is based-solely on instruments which are calibrated to read in electrical conductivity units and which have been effectively and extensively used at hazardous waste sites. There is only one manufacturer of such instruments at the time of this writing.

Many contaminants will produce an increase in free ion concentration when introduced into the soil or ground water systems. This increase over background conductivity enables detection and mapping of contaminated soil and ground water at Hazardous Waste Sites (HWS), landfills, and impoundments. Large amounts of organic fluids such as diesel fuel can displace the normal soil moisture, causing a decrease in conductivity which may also be mapped, although this is not commonly done. The mapping of a plume will usually define the local flow direction of contaminants. Contaminant migration rates can be established by comparing measurements taken at different times.

The absolute values of conductivity for geologic materials (and contaminants) are not necessarily diagnostic in themselves, but the variations in conductivity, laterally and with depth, are significant. It is these variations which enable the investigator to rapidly find anomalous conditions.

Since the EM method does not require ground contact, measurements may be made quite rapidly. Lateral variations in conductivity can be detected and mapped by a field technique called profiling. Profiling measurements may be made to depths ranging from 0.75 to 60 meters. The data is recorded using strip chart and magnetic tape-recorders. This continuous measurement allows increased rates of data acquisition and improved resolution for mapping small geohydrologic features. Further, recorded data enhanced by computer-processing has proved invaluable in the evaluation of complex hazardous waste sites. The excellent lateral resolution obtained from EM profiling datas has been used to advantage in efforts to outline closely-spaced burial pits, to reveal the migration of contaminants into the surrounding soil, and to delineate fracture patterns.

Vertical variations in conductivity can also be detected by the EM method. A station measurement technique called sounding is employed for this purpose. Data can be acquired from depths by combining results from a variety of EM instruments, each requiring different field application techniques. Other EM systems are capable of sounding to depth of one-thousand feet or more, but have not yet been used at HWS and are not adaptable to continuous measurements.

Profiling is the most cost-effective use of the EM method. Continuous profiling can be used in many applications to increase resolution, data density, and permit total site coverage at critical sites.

At HWS, applications of EM can provide:

- Assessment of natural geohydrologic conditions;
- Locating and mapping of burial trenches and pits containing drums and/or bulk wastes;
- Determination of flow direction in both unsaturated and saturated zones;
- Rate of plume movement by comparing measurement taken at different times;
- Locating and mapping of utility pipes and cables which may affect other geophysical measurements, or whose trench may provide a permeable pathway for contaminant flow.

Although there is available a wide variety of EM-equipment; most of it is intended for geophysical exploration of mineral deposits. These units have not been used at HWS and do not provide a simple conductivity reading. This document discusses only those instruments which are designed and calibrated to read directly in units of conductivity.

Conductance is measured with electronic instrumentation consisting of a transmitter coil and receiver coil. The transmitter coil radiates an electromagnetic field which induces eddy currents in the earth below the instrument. Each of these-eddy current loops, in turn, generates a secondary electromagnetic field which is proportional to the magnitude-of the current flowing within that loop. A part of the secondary magnetic field from-each loop is intercepted by the receiver coil and produces an output voltage which (within limimts) is linearly related to subsurface conductivity. This reading is a bulk measurement of conductivity, e.g., the cumulative response to subsurface conditions ranging all the way from the surface to the effective depth of the instrument.

The sampling depth of EM equipment is related to the instrument's coil specing. Instruments with coil specings of one, four, ten, twenty, and forty meters are commercially available. The nominal sampling depth of an EM system is taken to be approximately 1.5 times the coil specing.

The EM sounding methodican rarely identify more than two or three-layers with reasonable confidence. The greater the contrast in the conductivity values of each layer, the better the results. Often, the more detailed resistivity sounding method is used to complement EM profiling data.

The results of sounding analysis are usually presented as a vertical section, in which the conductivity layers are identified as a function of depth. The analyst may be able to correlate these layers to geohydrologic units believed to exist at the site.

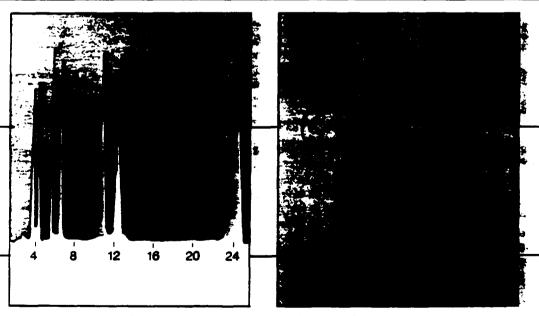
Although the EM technique can be used for profiling or sounding, profiling is the most effective use of the EM method. Profiling makes possible the rapid mapping of subsurface conductivity changes, and the location; delineation; and assessment of spatial variables resulting from changes in the natural setting or from many contaminants.

EM is a very effective reconnaissance tool. The use of qualitative non-recorded data can provide initial interpretation in the field. If site conditions are complex, the use of a high-density survey grid, continuously-recording instruments, and computer processing may be necessary, in order to properly evaluate subsurface conditions. When continuously-recording instruments are used, total site coverage is feasible. More quantitative information can be obtained by using conductivity data from different depth ranges. At present, three different systems must be used to acquire data from 0.75 to 60 meters. Very often, however, data from two standard depths, e.g. six and fifteen meters, is adequate to furnish depth information.

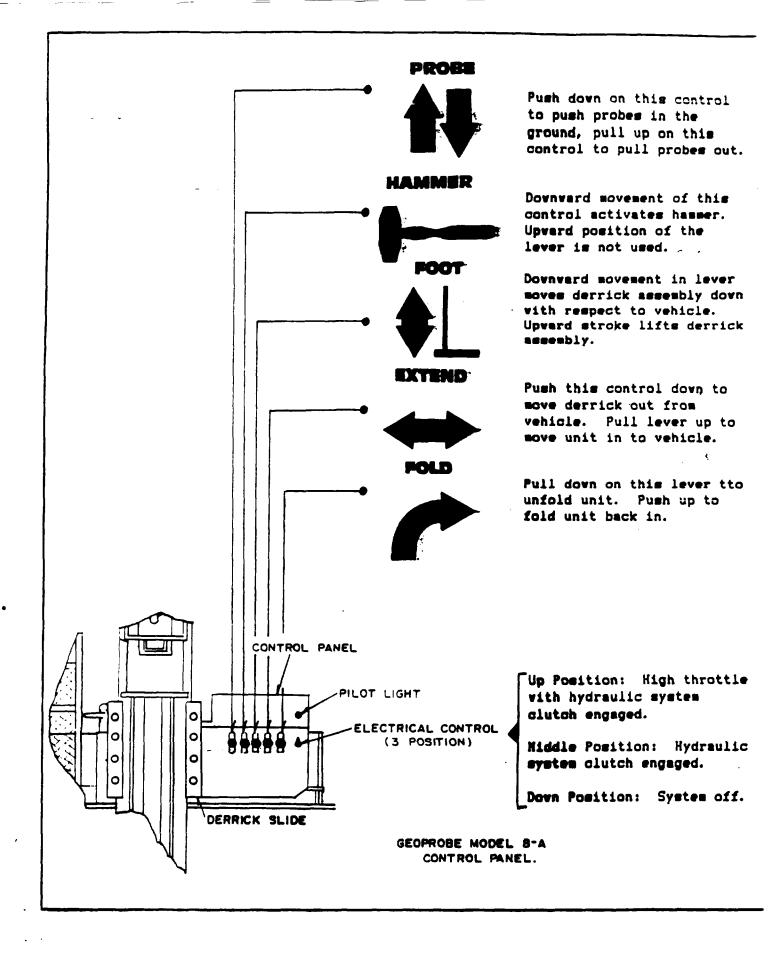
Capabilities

- The EM profile method permits rapid data acquisition, resulting in high-density and high-resolution surveys.
- Profiling data may be acquired from various descrete depths, raning from 0.75 meters to 60 meters.
- Continously-recording instruments (to fifteen meter depth) can increase survey speed, density,
 and resolution permitting total site coverage, if required.
- EM reads directly in conductivity units (mm/m) permitting use of raw data in the field, and correlation to specific conductance of ground water samples.
- EM can map local and general changes in the natural geohydrologic setting.
- EM can detect and measure the boundaries of a conductivity plume.
- Direction of plume flow can be determined from an EM conductivity map.
- EM measurements taken at different times can provide the means to compute movement rates of conservative contaminants.
- EM can detect and map burial pits and trenches of both bulk and drummed wastes.
- EM can detect and map the location of buried metallic utility lines.

Limitations


- e EM has less sounding (vertical) resolution than the resistivity method due to its limited number of depth intervals.
- The acquisition of data from depths of 0.75 to 60 meters requires the use of three different EM systems.
- Continuous data can be obtained only to depths up to approximately fifteen meters.
- An EM measurement is influenced by the shallower materials more than the deeper ones; this
 must be considered when evaluating the data.
- EM measurements become non-linear in zones of very high conductivity.
- The EM method is susceptible to noise from a number of sources, including natural atmospheric noise, powerlines, radio transmitters, buried metallic trash, pipes, cables, nearby fences, vehicles, and buildings.

APPENDIA D


Cleoprobe

SOIL PROBING EQUIPMENT

For Soil Vapor, Soil Core, and Groundwater Sampling Applications

DRAWN PROJECT APPROVED DATE

REVISED

DATE

GEOPROBE MODEL 8-M

MACHINE MAINTENANCE

CHECK THE HYDRAULIC FLUID RESERVOIR LEVEL AT THE BEGINNING OF EACH OPERATING DAY, MAINTAIN THE OIL LEVEL WITHIN ONE-HALF INCH OF THE COLD FILL LEVEL ON THE DIP STICK. APPROPRIATE OILS FOR FILLING ARE LISTED IN THIS MANUAL.

GREASE SHOULD BE APPLIED TO THE DERRICK SLIDE (TWO ZIRCKS ON EACH SIDE) AND THE DERRICK END OF THE FOLD CYLINDER (ONE FITTING) ON A WEEKLY BASIS.

CHECK THE OIL COOLING FAN EACH DAY AND MAKE SURE THAT IT IS OPERATING PROPERLY.

THIS MACHINE VIBRATES! TIGHTEN BOLTS AND HYDRAULIC FITTINGS AT LEAST MONTHLY.

KEEP TOOL THREADS CLEAN. WIRE BRUSH THEM TO REMOVE DIRT AFTER EVERY USE.

MAINTENANCE Page 1 of 1. Revised October 1989 13/MANT8M.989

GEOPROBE MODEL 8-M OPERATION SAFETY CAUTIONS

- 1. <u>Always</u> take vehicle out of gear and set emergency brake <u>before</u> engaging remote ignition.
- CAUTION: 2. If vehicle is parked on a loose or soft surface do not fully raise rear of vehicle with probe foot, as vehicle may fall or move, causing injury.
 - 3. Always $\underline{\texttt{EXTEND}}$ the probe unit out from the vehicle and deploy the $\underline{\texttt{FOOT}}$ to clear vehicle roof line before folding the probe unit out.
 - Operators should wear OSHA approved steel toed shoes and keep feet clear of probe <u>FOOT</u>.
- CAUTION: 5. One person only should operate the probe machine and the assembly disassembly of probe rods and accessories.
 - 6. Never place hands on top of a rod while it is under the machine.
 - 7. Turn off the hydraulic system while changing rods, inserting the hammer anvil, or attaching accessories.
 - 8. Operator must stand to the control side of the probe machine, clear of probe foot and mast, while operating controls.
 - 9. Wear safety glasses at all times during the operation of this machine.
 - 10. Never exert down pressure on the probe rod so as to lift the machine base over six inches off the ground
- CAUTION: 11. Never exert down pressure on a probe rod so as to lift the rear tires of the vehicle off the ground.
 - 12. Always remove the hammer anvil or other tool from the machine before folding the machine to the horizontal postion.
- CAUTION: 13. The vehicle catalytic converter is hot and may present a fire hazard when operating over dry grass or combustibles.
 - 14. Geoprobe operators must wear ear protection. OSHA approved ear protection for sound levels exceeding 85 dba is recommended.
 - 15. The location of buried or underground utilities and services must be known before starting to drill or probe.
 - 16. Shut down the hydraulic system and stop the vehicle engine before attempting to clean or service the equipment.
- CAUTION: 17. Accidental engagement of this machine may cause injury.

Training Manual

- A. STEP BY STEP PROCESS FOR GATHERING SOIL VAPOR SAMPLES.
 - I. Positioning Geoprobe
 - a) Back carrier van or pick-up to desired probing location and set park brake.
 - b) Activate unit and use EXTEND control and foot cylinder to laterally extend probing unit. NOTE: CHECK FOR CLEARANCE AT ROOF OF VEHICLE BEFORE UNFOLDING GEOPROBE
 - c) Use the FOLD and FOOT controls to place unit to exact probing spot.
 - 1. Adjust probe axis to perpendicular and put carrier vehicle weight on probe unit.
 - 2. When probe axis is perpendicular to ground surface, probing is ready to begin.
 - II. Drilling (concrete, asphalt, etc)
 - a) Insert carbide-tipped drill bit into hammer.
 - b) Activate HAMMER ROTATION CONTROL by turning counter-clockwise. (This allows drill bit to spin when HAMMER and PROBE controls are activated).
 - c) Use HAMMER CONTROL to activate rotation.
 - d) When surface has been penetrated, turn knob clockwise.

IMPORTANT NOTE: BE SURE TO SHUT OFF THE ROTARY ACTION BEFORE DRIVING PROBE RODS.

III. Probing

- a) Insert hammer anvil in hammer
- b) Screw drive cap on end of probe rod.
- c) Screw expendable point holder onto other end of first probe rod.
- d) Slip expendable drive point into point holder.
- e) Activate hydraulics and start to probe
 - Probe rods must remain parallel to probe cylinder shaft while probing.
 - 2. Use HAMMER CONTROL if unable to reach desired depth with PROBE control.

IMPORTANT NOTE: KEEP RODS SCREWED TIGHT WHILE HAMMERING.

- f) Continue probing to d4sired depth.
 - 1. If anticipated depth is more than three feet, screw another with drive cap into penetrated rod.
- 2. Continue to screw rods together as probing continues until desired depth is reached.

 IMPORTANT NOTE: DEACTIVATE HYDRAULICS WHILE CHANGING RODS

IV: Gathering Vapor Samples

a) Remove hammer anvil from hammer

b) Screw on pull cap to end of probe rod.

c) Retract rod approximately 6" - 12".

1. Retraction of rod disengages expendable drive point holder and allows for soil vapor to enter rod.

d) Unscrew pull cap and replace with gas sampling

1. Cap is furnished with barbed hose connector

e) Connect vacuum hose to barbed connector IMPORTANT: SHUT ENGINE OFF BEFORE TAKING SAMPLE (Exhaust fumes can cause faulty sample date)

f) Turn vacuum pump on and place desired vacuum pressure in vacuum tank.

g) Open line control valve.

- 1. For each rod used allow for 300 (1) of volume. Example: 3 rods used = 900 (1) = .900 on gauge.
- h) After achieving sufficient purge volume close valve and allow sample line pressure gauge to return to 0.
 - 1. This returns sample train to atmospheric temperature.

i) The vapor sample can now be taken.

- Pinch hose near gas sampling cap to disallow any outside vapors to enter rods.
- 2. Insert syringe needle into center of barbed hose connector and draw out vapor sample.
- 3. Take sample to G.C. to be analyzed.
- 4. Periodically drain the vacuum tank.

V. Retracting Probe Rods

- a) Activate Unit
- b) Unscrew gas sampling cap and replace with pull cap.
- c) Retract and unscrew rods.

NOTE: DEACTIVATE HYDRAULICS WHILE CHANGING RODS

VI. Folding Probing Unit into Carrier Van

a) Use FOOT, FOLD, and EXTEND controls to load

B. MAINTENANCE

I. <u>Cleaning Rods</u>

- a) Rods must be kept clean
 - 1. GC will indicate dirty rods
 - Alconox detergent and wire brush to wash rods and threads
 - 3. Distilled H20 to rinse
 - 4. Let Dry

II. Machine Maintenance

Check hydraulic fluid level at beginning of each operating day.

1. Maintain oil within 1/2" of the cold fill

level on dip stick.

2. Hydraulic oil/filter should be changed after the first 250 hrs. of service and every 1000 hrs. of operation or one year of service thereafter.

Check the oil cooling fan each day to make sure it is operating properly.

Tighten bolts and hydraulic fittings at least monthly.

5. Check hydraulic hosed for leaks.

b) Keep syringes clean

C) Grease Zerks

1. Show zerk locations on machine

2. Apply grease to Derrick slide (2 zerks on each side) weekly.

Apply grease to Derrick end of the Fold Cylinder weekly.

d)

Broken Hose or Faulty Hydraulics.

1. To manually fold probe unit, unscrew two hydraulic lines (hose #8 & 9 in operator's manual) that attach to FOLDING CONTROL on control Panel and fold unit in carrier van.

2. Unscrew Telescope hydraulic lines (hose #10 & 11).

3. Unit can now slide into carrier van by carefully reversing carrier van against a solid structure (tree, concrete wall, etc), until probing unit is completely in van.

Geoprobe Systems

QUALITY ASSURANCE MEMORANDUM

TO: ALL SOIL GAS SAMPLERS.

SUBJECT: VACUUM SEALING OF SOIL GAS SAMPLING SYSTEM.

Active sampling of soil gas requires the application of reduced pressure (vacuum) to induce flow from the soil matrix into the sampling system. As a quality control measure, it is important that the operator take steps neccessary to insure vacuum tightness of the sampling system. Listed below are procedures which Geoprobe users report employing in order to assure vacuum tightness of the soil gas sampling system.

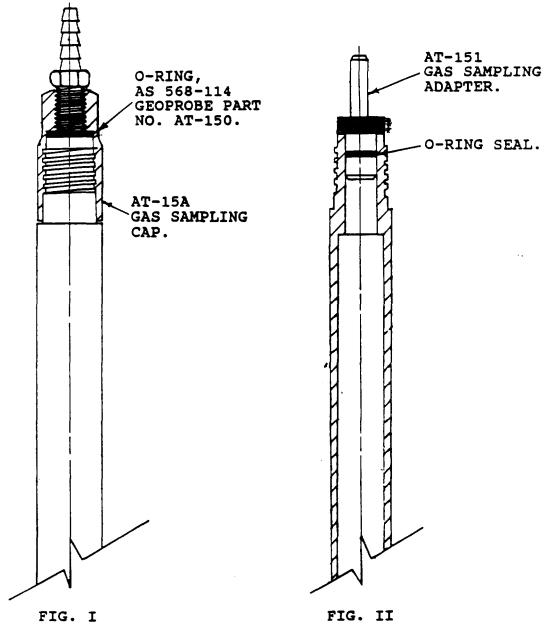
- 1.) USE TEFLON TAPE SEALANT ON ALL ROD JOINTS. The use of two rounds of 1/2" wide PTFE Teflon Thread Seal Tape is recommended. Such tape need not be applied to the point holder used at the tip of the leading rod, but should be applied to each rod joint thereafter. Many factors can cause leakage at a rod joint. Don't take chances, use teflon tape. This product is normally avilable at your local plumbing or hardware supplier.
- 2.) USE AN "O" RING INSIDE GEOPROBE SAMPLE CAPS (Part No. AT-15A) OR SWITCH TO THE NEW GEOPROBE GAS SAMPLING ADAPTER (Part No. AT-151):

A perfect vacuum seal can be assured with your present gas sampling caps by inserting an "O" ring into the sample cap. Sample O-Rings are included with this memo. Simply insert an O-Ring into the threaded end of your sample cap as shown in Figure 1. Screw the cap onto the rod and tighten 1/4 turn with a wrench. Note here also that you should be using teflon tape to seal the threads on the brass tubing insert which is threaded into the top of the cap.

Removal of the O-Ring from the sample cap for cleaning or replacement is easy also; a short length of wire formed to a hook accomplishes this job quickly. The O-Rings attached for this purpose are standard, industrial nitrile polymer, 90 durometer, AS 568-114

July 1990 Page 1 of 4 O-Rings (Geoprobe Part No. AT-150, Cost: \$2.50 for a pack of 25). 70 durometer O-Rings would also be acceptable and also widely available.

A good alternative to the standard AT-15A gas sampling cap is the new Geoprobe AT-151 Gas Sampling Adapter (Fig. 2). This Adapter is easily twisted into the bore of Geoprobe Rods for gas sampling. Insertion of the sample cap in this manner compresses the adapter's O-Ring, forming a vacuum-tight seal between the adapter and the rod. It is recommended that the user wipe the bore with a small rag or brush before inserting the Our testing has shown these adapters to be very effective and dependable with the added benefit of speed and reduced cost (\$30/ea. opposed to \$40/ea. for the standard gas sampling cap.) The bore opening at the male end on older Geoprobe rods may have to be chamfered with a file or air grinder to accept this new cap. new gas sampling adapter is machined from stainless steel and is available for immediate delivery.


- 3.) PERFORM DAILY CHECK ON THE SAMPLING TRAIN: Vacuum leakage is a problem for everyone who works with vacuum. Outside your sampling system is a whole atmosphere full of bouncing molecules anxious to get in before your soil gas does. Here are some steps you can take to keep them out:
 - > CHECK YOUR SAMPLING TUBE FOR TIGHTNESS. process is easy. Most Geoprobe operators use the Geoprobe Vacuum/Volume system while others employ similar systems of their own design. The first part of the system to check is the line valve gauge and vinyl and silicone sampling tubing. Place a plug in the end of the sample tubing that you normally place on the gas sampling cap (the butt end or cap of a felt tip pen works well for this purpose). Open the sampling system line valve and apply 20" Hg of vacuum from the system vacuum source. Since the sample line is plugged, the line vacuum gauge should also register 20" Hg. Now, close the line valve. W the sampling train "shut in" in this manner the vacuum measured at the line gauge should remain at 20" Hg. If pressure at this gauge increases, then you have a leak. A hole in the vinyl tubing is the most likely cause. Attempt to isolate the cause of leakage by changing portions of the tubing. The maximum acceptable leakage rate here should be 2" Hg in 5 minutes.
 - > CHECK YOUR VACUUM TANK: Are you accurately measuring the volume of gas you pull from the ground, or do you have a leak in your sampling system? Here's how to measure: Close the line valve on the system. Pump the vacuum tank down to 20" Hg of vacuum. Shut off the pump and record the time and pressure. Check the system again in a few minutes.

In general, the purging of a soil gas point is performed in less than five minutes. Therefore there should certainly be no detectable change in the tank pressure in a five minute period. Maximum allowable leakage rate under most conditions should be 1/2 liter per hour as measured on the tank gauge. your system exceeds this rate there are some places to begin looking: 1) Check the exhaust from the vacuum pump by covering it with your finger. If you feel vacuum pressure beginning to build, then there is leakage past the system check valve. The check valve may need cleaned or replaced. 2) Check the sample line, suction at this point would indicate leakage past the line valve (your partner must have sucked some sand into the sampling system while you weren't looking), this valve may need to be cleaned or replaced. 3) Other places for leakage include the system tubing and the tank drain valve. Do no attempt soil gas sampling until you have corrected leakage.

> LIMIT THE ALLOWABLE VACUUM RECOVERY PERIOD FOR SOIL GAS SAMPLING: Normal practice with Geoprobe users is to first purge a certain volume from the rod string. During this period, the entire sampling train, from tank to the sampling end of the rods, is under Once the desired purge volume has been vacuum. removed, the rods are closed off by closing the system line valve. With the line valve shut, the rods now return to atmospheric pressure (in most cases). Under ideal operating conditions, the soil at the rod tip will yield sufficient gas to return the rod string to atmospheric pressure in less than one minute. It should be standard practice for the probe operator to record the time required for the rod string to return to atmospheric pressure. is normally termed the "recovery" time. The longer the recovery time, the greater the effect of any leakage in the sampling system. Recovery periods greater than 10 minutes should be considered suspect and the operator should consider changing either the sampling depth, location, length of pull-back from the sampling tip, or switch the technique entirely from soil gas to grab sampling and analysis of soil.

> MAKE SAMPLING SYSTEM LEAK CHECKS A ROUTINE PROCEDURE: These are not lengthy, time consuming quality control procedures that we have discussed here. These procedures should become second nature to field personnel. Tubing assemblies can easily be checked three times per day. We recommend that the vacuum/volume system be checked at the beginning of each working day. Provide spaces on field sampling data forms for recording the results of pressure tests on the sampling system and for recording the pressure recovery time at field sample points.

FEEDBACK? Do you have pointers that you are willing to share regarding quality control measures in soil gas sampling? Soil gas sampling procedures in general? Please let us know. We are anxious to discuss them and hopefully share your suggestions with other field practitioners.

USE OF GEOPROBE AT-15A GAS SAMPLING CAP WITH 0-RING SEAL. GEOPROBE GAS SAMPLING ADAPTER INSERTED INTO BORE OF GEOPROBE ROD.

JULY 1990 QUALITY ASSURANCE MEMORANDUM

MICROWAVE APPLICATION NOTE FOR ACID DIGESTION

Sample Type: Soil

Summary:

This method provides for the acid digestion of soil in a closed Teflon PFA vessel using microwave heating for analysis by spectroscopic or wet chemical methods.

Required Equipment:

MDS-81D Microwave Instrument, Teflon PFA Vessels (120 ml size) with pressure relief valve, Digestion Turntable, Capping Station.

Reagents:

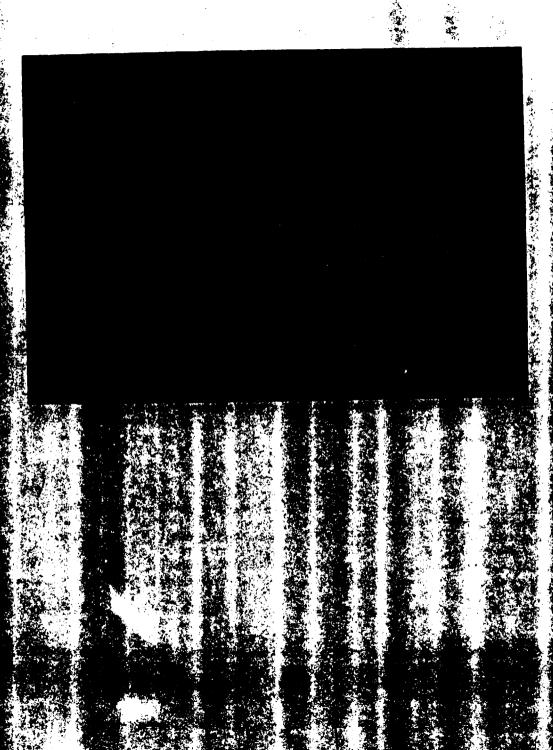
Nitric Acid (70%) Hydrogen Peroxide (30%)

Method:

- 1. Transfer 1.0 g of sample into a vessel and add 10 ml of nitric acid. Place a safety valve and cap on the vessel and then tighten cap using the Capping Station. Place the vessel in the turntable and attach a venting tube.
- 2. Repeat step 1 until the turntable contains 12 vessels.
- 3. Turn the MDS-81D exhaust on to the maximum fan speed. Activate the turntable so that it is rotating.
- 4. Program the instrument for 2 minutes 30 seconds time and 100% power in program 1, and 10 minutes at 80% power in program 2. Depress the START key and allow the sample mixtures to heat.

^{*} Teflon is DuPont's registered trademark for its fluoropolymer resins.

5. Allow the solutions to cool for 5 minutes and manually vent each vessel. Open the vessels and add 5 ml of 30% hydrogen peroxide dropwise. When the effervescence stops, filter the solutions into appropriate containers.


NOTE: This procedure is a reference starting point for sample digestion using the MDS-81D and may need to be modified or changed to obtain the required results on your sample.

CAUTION: Manual venting of CEM closed vessels should only be performed when the vessel contents are at or below room temperature to avoid the potential for chemical burns. When venting vessels, it is recommended that hand, eye and body protection be worn.

Agency, 1989

The second second

Volume IA: Laboratory Physical / Kemical Meisons lanual

ではない

METHOD 7190

CHROMIUM (ATOMIC ABSORPTION, DIRECT ASPIRATION)

1.0 SCOPE AND APPLICATION

1.1 See Section 1.0 of Method 7000.

2.0 SUMMARY OF METHOD

2.1 See Section 2.0 of Method 7000.

3.0 INTERFERENCES

- 3.1 See Section 3.0 of Method 7000 if interferences are suspected.
- 3.2 An ionization interference may occur if the samples have a significantly higher alkali metal content than the standards. If this interference is encountered, an ionization suppressant (KC1) should be added to both samples and standards.
- 3.3 Background correction may be required because nonspecific absorption and scattering can be significant at the analytical wavelength. Background correction with certain instruments may be difficult at this wavelength due to low-intensity output from hydrogen or deuterium lamps. Consult the specific instrument manufacturer's literature for details.

4.0 APPARATUS AND MATERIALS

- 4.1 For basic apparatus, see Section 4.0 of Method 7000.
- 4.2 Instrument parameters (general):
 - 4.2.1 Chromium hollow cathode lamp.

 - 4.2.2 Wavelength: 357.9 nm.
 4.2.3 Fuel: Acetylene.
 4.2.4 Oxidant: Nitrous oxide.
 - 4.2.5 Type of flame: Fuel rich.
 - 4.2.6 Background correction: Not required.

5.0 REAGENTS

5.1 See Section 5.0 of Method 7000.

5.2 Preparation of standards:

- 5.2.1 Stock solution: Dissolve 1.923 g of chromium trioxide (CrO₃, analytical reagent grade) in Type II water, acidify with redistilled HNO₃, and dilute to 1 liter. Alternatively, procure a certified standard from a supplier and verify by comparison with a second standard.
- 5.2.2 Prepare dilutions of the stock solution to be used as calibration standards at the time of analysis. The calibration standards should be prepared using the same type of acid and at the same concentration as will result in the sample to be analyzed after processing.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See Chapter Three, Section 3.1.3, Sample Handling and Preservation.

7.0 PROCEDURE

- 7.1 <u>Sample preparation</u>: The procedures for preparation of the sample are given in Chapter Three, Section 3.2.
 - 7.2 See Method 7000, Paragraph 7.2, Direct Aspiration.

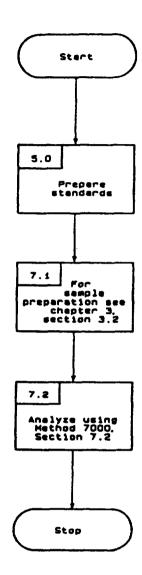
8.0 QUALITY CONTROL

8.1 See Section 8.0 of Method 7000.

9.0 METHOD PERFORMANCE

9.1 The performance characteristics for an aqueous sample free of interferences are:

Optimum concentration range: 0.5-10 mg/L with a wavelength of 357.9 nm. Sensitivity: 0.25 mg/L. Detection limit: 0.05 mg/L.


- 9.2 For concentrations of chromium below 0.2 mg/L, the furnace procedure (Method 7191) is recommended.
- 9.3 Precision and accuracy data are available in Method 218.1 of Methods for Chemical Analysis of Water and Wastes.
- 9.4 The data shown in Table 1 were obtained from records of state and contractor laboratories. The data are intended to show the precision of the combined sample preparation and analysis method.

10.0 REFERENCES

- 1. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-82-055, December 1982, Method 218.1.
- 2. Gaskill, A., Compilation and Evaluation of RCRA Method Performance Data, Work Assignment No. 2, EPA Contract No. 68-01-7075, September 1986.

TABLE 1. METHOD PERFORMANCE DATA

Sample Matrix	Preparation Method	Laboratory Replicates
Wastewater treatment sludge	3050	6,100, 6,000 ug/g
Emission control dust	3050	2.0, 2.8 ug/g

TRICIENT N LASL SCU 980 558 233

Thut The standard of the first of the standard	side. Failure to do this will prevent this card you the name of the person delivered to and s are available. Consult postmaster for fees
3. Article Addressed to: MR BRIAN WINTZEN BROWNING FERRIS IND. Z37 FARMING FON Rd.	4. Article Number H4924/4 Type of ServiceD Registered Insured Certified COD Express Mail Return Receipt for Merchandise Always obtain signature of addressee
5. Signature - Addressee X 6. Signature - Agent X 7. Date of Delivery	or agent and DATE DELIVERED. 8. Addressee's Address (ONLY if requested and fee paid)
9-14-90	DOMESTIC DETUDAL DECEM

ACCESS INFORMATION SHEET

Site Name:	Trident North Landfill	FIT Project Manager:	Mitch Cohen John Jenkins
Site Address:	Road 160 Jedhurg, 50 29438	FIT State Coordinator: EPA Contact: Field Date:	EARL BOZEMAN September 17, 1990
EPA ID #:	5CD980558233	TDD Number:	F4-9007-35

	File Information	Verification
Facility Owner/Operator Address Phone No. Principal Contact		Contact Brian Wintzen (803) 875-7116 (4900) BFI Charleston 237 Farmington Rd Summercille SC.
Landowner Address Phone No. Principal Contact (if different from above)		
Date of Information		

Date Access Required (3 weeks prior to field date)	 Date Information Submitted to EPA	

Comments:

ACCESS INFORMATION SHEET

Trident North Landfill Site Name: **Site Address:**

Summerville, South Carolina Doribester / Beikeley County 29438

FIT Project Manager: **FIT State Coordinator:**

EPA Contact:

Field Date:

Mitch Cohen Jenkins

EARL BEZEMAN

Sept. 17, 1990

EPA ID #:

SCD980558233

TDD Number:

F4-9007-35

	File Information	Verification
Facility Owner/Operator Address Phone No. Principal Contact	Browning Ferris Industries 237 Farmington Road Summerville, South Caroling 27438 (803) 871-7116 Allen Walker, Landfill Manager	Dorchester County Real Estate update This Number 122 00 00 054 (SAME)
Landowner Address Phone No. Principal Contact (if different from above)	5Am ^o	(SAME)
Date of Information	July 26, 1990	July 26, 1990

Date Access Required (3 weeks prior to field date)	8/23/90	Date Information Submitted to EPA	1-30-90	

Comments:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IV

345 COURTLAND STREET, N.E. ATLANTA, GEORGIA 30365

4WD-WPB

DATE: 8/3//90

Mr. Phil Blackwell NUS Corporation 1927 Lakeside Parkway Tucker, Georgia 30084

Dear Mr. Blackwell:

This letter concerns the proposed/completed FIT report on the following CERCLA site:

Site	Name: TRIDENT NORTH LANDFILL
Site	I.D.#: SCD980558233
Site	Reference#: 3380
EPA I	Project Manager: EARL Exit man

The above site has been assessed by EPA and a disposition made on it. Therefore, it has now been assigned to FIT for the following action:

	NFRAP
	PA
	SSI Phase I (PAR)
	SSI Phase II
	LSI Evaluation
	LSI
	X Others Unicize F.
Sincerely,	ICCATION !

(A.10

Susan M. Deihl, Chief

North Unit

Site Assessment Section

cc: Fran Harrell

UTICIZE FASP to lOCATE SUPTHBLE ICAMON FOR BACKGROUNDASAMPLES IN CONJUNCTION WITH PHASE IT SSI.
ALSO UTILIZE GEOPHYSICS to DETERMINE TOUNDARIES OF FILL AREA

Acknowledging receipt of assignment

Hoch 40 ato 09/07/

Printed on Recycled Paper

Site Assessment Section

Fran Harrell

cc:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IV

345 COURTLAND STREET, N.E.

ATLANTA, GEORGIA 30365 4WD-WPB Mr. Phil Blackwell NUS Corporation 1927 Lakeside Parkway Tucker, Georgia 30084 Dear Mr. Blackwell: This letter concerns the proposed/completed FIT report on the following CERCLA site: Site Name: TRIDENT NORTH LANDFILL Site I.D.#: SCD480558233 Site Reference#: 3380 EPA Project Manager: <u>EARL BOZEMAN</u> The above site has been assessed by EPA and a disposition made on it. Therefore, it has now been assigned to FIT for the following action: NFRAP PA _SSI Phase I (PAR) _SSI Phase II LSI Evaluation LSI Others UTICIZE FASP to lOCATE SUITABLE location for background, SAMPLES IN CONJUNCTION WITH PHASE IT SSI. Sincerely, ALSO UTLIZE geophysics to determine tOUNDARIES OF FILL AREA Susan M. Deihl, Chief North Unit

Black-40ate 09/07/911

Acknowledging receipt of assignment

U. S. ENVIRONMENTAL PROTECTION AGENCY REGION IV, ATHENS, GEORGIA

MEMORANDUM

DATE: SEP 1 0 1990

SUBJECT: Document Review: Screening Site Inspection Study Plan, Trident North

Landfill, Jedburg, Dorchester-Berkeley County, South Carolina;

ESD Project No. 90E-492

FROM: Jonathan Vail, Hydrogeologist

Hazardous Waste Section
Environmental Compliance Branch

Environmental Services Division

TO:

Al Hanke, Chief CMAY Site Investigation Section

Site Investigation and Support Branch

Waste Management Division

THRU:

William R. Bokey, Chief

Hazardous Waste Section

Environmental Compliance Branch Environmental Services Division Will R. Shy

guat Val

SISB/SAS

ANTH, OR.

The activities identified in the Screening Site Inspection Study Plan for the Trident North Landfill site located in Jedburg, South Carolina appear acceptable to the ESD pending the following correction:

• Page 9 & 10, Table 1 and Figure 3. The table uses JL for the prefix in the sample codes and the figure uses TL. The table and figure should correlate.

If you have any questions or comments, please call me at FTS 250-3390.

cc: Finger/Wright

Bokey/Hall Knight Franklin